RADIATION RISK ASSESSMENT 36:
MICRO-CT AND NANO-CT X-RAY SYSTEMS

1. SCOPE AND PURPOSE

This radiation risk assessment is for the use of Micro-CT and Nano-CT x-ray imaging systems.

The purpose of this risk assessment is to assess the risks from exposure to ionising radiation in order to identify the measures needed to restrict the radiation exposure of employees or other persons and it has been prepared in accordance with the guidance given in ACoP 8 to the Ionising Radiations Regulations 2017 (IRR17).

2. DOCUMENT CONTROL

<table>
<thead>
<tr>
<th>Version</th>
<th>Author</th>
<th>Date of issue/review</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>ARC</td>
<td>9 October 2017</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>ARC</td>
<td>9 February 2018</td>
<td>Review and update for IRR17</td>
</tr>
<tr>
<td>2.1</td>
<td>ARC</td>
<td>21 September 2018</td>
<td>Minor revisions</td>
</tr>
</tbody>
</table>
3. NATURE OF SOURCES OF IONISING RADIATION

Micro-CT and Nano-CT systems are self-contained x-ray imaging systems that are used for high resolution 3D imaging of small samples. Typical operating parameters for generating x-rays are 20-100kV and up to 15-18W (micro-CT) and 160kV / 0.17mA (nano-CT). Each system is housed in a shielded and interlocked enclosure with accessible environmental dose rates specified to be less than 1µSv/h. System details can be found on the RPS x-ray database Scanco µCT100 (XRID4), Phoenix Nanotom (XRID27), Bruker Skyscan 1172 (XRID31), Bruker Skyscan 1176 (XRID54).

4. DOSE ASSESSMENTS

Manufacturer’s specifications are that accessible dose rates are less than 1µSv/h. Commissioning tests by the installer and leakage radiation measurements undertaken by the UoL Radiation Protection Manager (see CE report for each unit) show that in all cases radiation dose rates are less than 0.5µSv/h at any point on the external surface of the enclosure and doses at an operator position are negligible.

From x-ray tube emission data estimated radiation dose rates close to the unshielded tube will be of the order of up to 30 Gy/h \(^a\), and scatter dose rates up to a few mGy/h \(^b\).

Estimated doses should be compared with:

- University of Leeds dose constraint for radiation workers = 1mSv/year \(^c\)
- Dose constraint for exposures to the public from any new source of radiation = 0.3mSv/year \(^d\)
- Average radiation dose to the public in the UK = 2.7mSv/year \(^e\)
EXTERNAL DOSES

Estimated radiation dose rates to which anyone can be exposed:

- Radiation dose rates at the operator position during normal operation of the x-ray unit and enclosure are negligible.
- Accessible dose rates of <0.5µSv/h close to the enclosure would result in <1mSv dose if the operator remains in this position with the system operating for a whole working year. Therefore estimated body doses are <1mSv (University dose constraint).
- Radiation dose rates if there is a failure or malfunction of shielding or interlocks could be up to 30Svh⁻¹ in the primary beam and scatter dose rates of up to a few mSvh⁻¹.

INTERNAL DOSES

Likelihood of contamination arising and being spread
Not applicable – x-ray source.

Estimated levels of airborne and surface contamination
Not applicable – x-ray source.

5. DOSIMETRY

The use of dosimetry is not appropriate for these activities as radiation levels would not be detected by dose meters.

6. MANUFACTURER’S ADVICE ON SAFE USE AND MAINTENANCE

The equipment must be on a maintenance / service contract.
7. ENGINEERING CONTROL MEASURES AND DESIGN FEATURES

X-ray enclosures are compliant with ACoP 9(2) of IRR17.
Engineering controls and safety features include adequate shielding and interlocked door access.
Warning lamps are fitted to each enclosure to indicate x-ray emission.

8. PLANNED SYSTEMS OF WORK

Local rules are in place and specify:
- Requirements for management of work, training and authorisation.
- Requirements for critical examinations.
- Requirements for monitoring of dose rates.
- Work instructions including instructions for controlling exposures.
- Contingency plans.
Operating instructions for the equipment are kept in each lab.

9. PERSONAL PROTECTIVE EQUIPMENT

No additional PPE is required for this work.

10. ACCESS TO AREAS WHERE THERE ARE SIGNIFICANT DOSE RATES OR CONTAMINATION LEVELS

Each laboratory is secured with a programmable key-fob system and only authorised personnel have access.
Each lab is classified as an Undesignated Area as x-ray exposure levels during normal operation are negligible.
## 11. RISK EVALUATION AND CONTROLS

<table>
<thead>
<tr>
<th>Risk evaluation</th>
<th>Control measures</th>
<th>Residual risk after controls</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Radiation exposure during normal use</strong></td>
<td>Operator training.</td>
<td></td>
</tr>
<tr>
<td>X-ray leakage and scatter dose rate &lt;0.5µSvh⁻¹ at all points and much less than this at operator position. Risk during normal use is negligible (very much less than the university's dose constraint of 1mSv/y).</td>
<td>Local rules include working instructions and emergency procedures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regular dose rate monitoring around the enclosure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical Examination before the x-ray tube is first used; if repaired, altered or moved.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regular maintenance and servicing of the equipment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual critical examination and audit by Radiation Protection Manager.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Possible accident situations or failure of control measures and steps to prevent or limit their consequences</td>
<td>Removal of panels / shielding giving access to unguarded x-ray beam</td>
<td>Operator training. All repairs and modifications to the equipment must only be carried out by a qualified service engineer. The service engineer must have sole use of the room if servicing requires the removal of shielding or over-riding of safety features.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Removal of panels or shielding could give access to areas where there is a high dose rate. Radiation exposure could exceed the University annual dose constraint of 1mSv. Dose rate could exceed dose constraint and legal dose limits.

X-rays; potential dose rate – Svh\(^{-1}\). Scatter dose rate - mSvh\(^{-1}\).

If the equipment were subject to damage the x-ray shielding may be compromised and radiation exposure could exceed dose constraints and legal dose limits.

X-rays; potential dose rate – Svh\(^{-1}\). Scatter dose rate - mSvh\(^{-1}\).

If the equipment failed the equipment should fail to safe and not be operable. However if the equipment was still operable radiation exposure could quickly exceed dose constraints and legal dose limits.
12. REFERENCES