RADIATION PROTECTION SERVICE
DEPARTMENT OF WELLBEING, SAFETY AND HEALTH

RADIATION RISK ASSESSMENT 26:
TSI ADVANCED AEROSOL NEUTRALIZER, TYPE 3088

1. SCOPE AND PURPOSE

This radiation risk assessment is for the use of a TSI type 3088 aerosol neutraliser plug in module. The purpose of this risk assessment is to assess the risks from exposure to ionising radiation in order to identify the measures needed to restrict the radiation exposure of employees or other persons and it has been prepared in accordance with the guidance given in ACoP 8 to the Ionising Radiations Regulations 2017 (IRR17).

2. DOCUMENT CONTROL

<table>
<thead>
<tr>
<th>Version</th>
<th>Author</th>
<th>Date of issue/review</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>ARC</td>
<td>6 November 2015</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>ARC</td>
<td>7 September 2018</td>
<td>Major update for IRR17</td>
</tr>
</tbody>
</table>
3. NATURE OF SOURCES OF IONISING RADIATION

The TSI type 3088 aerosol neutraliser is a plug in module for the TSI SMPS spectrometer
X-rays generated are less than 9.5keV.
The x-ray source is contained within a stainless steel chamber with gas inlet and outlet port access and is only operable when situated in place in the instrument. The x-rays are shielded by the enclosure and there are no accessible x-ray emissions during normal use.
Further details for these systems can be found on the RPS x-ray database.

4. DOSE ASSESSMENTS

Manufacturer’s specifications are that accessible dose rates are less than 0.3µSv/h at 0cm and less than 0.2µSv/h at 5cm and 10cm (measured at outlet port without tubing).
Leakage radiation measurements undertaken by the UoL Radiation Protection Manager (see CE report) show that radiation dose rates are less than 0.5µSv/h at any point on the external surface of the module and doses at an operator position are negligible.
The output from the tubes is unknown, however it can be estimated that radiation dose rates directly in front of an unshielded tube would be several Gy/h, and scatter dose rates up to a few mGy/h.
Estimated doses should be compared with:

- University of Leeds dose constraint for radiation workers = 1mSv/year
- Dose constraint for exposures to the public from any new source of radiation = 0.3mSv/year
- Average radiation dose to the public in the UK = 2.7mSv/year
EXTERNAL DOSES

Estimated radiation dose rates to which anyone can be exposed:

- Radiation dose rates at the operator position during normal operation of the x-ray unit and enclosure are negligible.
- Accessible dose rates of <0.5µSv/h close to the enclosure would result in <1mSv dose if the operator remains in this position with the system operating for a whole working year. Therefore estimated body doses are <<1mSv (University dose constraint).
- Radiation dose rates if there is a failure or malfunction of shielding or interlocks could be up to several Sv h⁻¹ in the primary beam and scatter dose rates of up to a few mSv h⁻¹.

INTERNAL DOSES

Likelihood of contamination arising and being spread
Not applicable – x-ray source.

Estimated levels of airborne and surface contamination
Not applicable – x-ray source.

5. **DOSIMETRY**

The use of dosimetry is not appropriate for these activities as radiation levels would not be detected by dose meters.

6. **SAFE USE AND MAINTENANCE**

Manufacturer's guidance on safe use and maintenance are followed and incorporated in the operating instructions. Where appropriate the equipment is subject to a maintenance / service contract.
7. ENGINEERING CONTROL MEASURES AND DESIGN FEATURES

X-ray module is compliant with ACoP 9(2) of IRR17.
Engineering controls and safety features include adequate shielding and interlocked operation.
LED warning lamps indicate x-ray emission.

8. PLANNED SYSTEMS OF WORK

Local rules are in place and specify:
 - Requirements for management of work, training and authorisation.
 - Requirements for critical examinations.
 - Requirements for monitoring of dose rates.
 - Work instructions including instructions for controlling exposures.
 - Contingency plans.

Operating instructions for the equipment are kept in each lab.

9. PERSONAL PROTECTIVE EQUIPMENT

No additional PPE is required for this work.

10. ACCESS TO AREAS WHERE THERE ARE SIGNIFICANT DOSE RATES OR CONTAMINATION LEVELS

The area around the instrument is classified as an Undesignated Area as x-ray exposure levels during normal operation are negligible.
11. RISK EVALUATION AND CONTROLS

<table>
<thead>
<tr>
<th>Risk evaluation</th>
<th>Control measures</th>
<th>Residual risk after controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation exposure during normal use</td>
<td>Operator training. Local rules include working instructions and emergency procedures. Regular dose rate monitoring around the enclosure and interlock check. Critical Examination before the x-ray tube is first used; if repaired, altered or moved. Regular maintenance and servicing of the equipment. Critical examination and audit by Radiation Protection Manager.</td>
<td>Low</td>
</tr>
<tr>
<td>X-ray leakage and scatter dose rate <0.5µSv/h at all points and much less than this at operator position. Risk during normal use is negligible (very much less than the university's dose constraint of 1mSv/y).</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
</tr>
</tbody>
</table>
Possible accident situations or failure of control measures and steps to prevent or limit their consequences

<table>
<thead>
<tr>
<th>Risk Assessment No. 26: TSI 3088</th>
<th>Removal of shielding giving access to unguarded x-ray beam</th>
<th>Operator training. All repairs and modifications to the equipment must only be carried out by a qualified service engineer. The service engineer must have sole use of the room if servicing requires the removal of shielding or over-riding of safety features.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Removal of shielding could give access to areas where there is a high dose rate. Radiation exposure could exceed the University annual dose constraint of 1mSv. Dose rate could exceed dose constraint and legal dose limits.</td>
<td></td>
</tr>
<tr>
<td>Damage to the equipment by misuse, impact or fire</td>
<td>If the equipment were subject to damage the x-ray shielding may be compromised and radiation exposure could exceed dose constraints and legal dose limits.</td>
<td>If the equipment, enclosure or interlocks have been damaged in any way or a malfunction is suspected the user should:</td>
</tr>
<tr>
<td></td>
<td>X-rays; potential dose rate – Sv/h (^1). Scatter dose rate - mSv/h (^1).</td>
<td>- switch the power off and remove the keys</td>
</tr>
<tr>
<td></td>
<td>If the equipment were subject to damage the x-ray shielding may be compromised and radiation exposure could exceed dose constraints and legal dose limits.</td>
<td>- inform the RPS who will arrange for the equipment to be checked by an engineer.</td>
</tr>
<tr>
<td>Interlocks not functioning and panels open</td>
<td>Regular dose rate monitoring around the enclosure and interlock check. Critical Examination before the x-ray tube is first used; if repaired, altered or moved. Regular maintenance and servicing of the equipment.</td>
<td>Regular dose rate monitoring around the enclosure and interlock check. Critical Examination before the x-ray tube is first used; if repaired, altered or moved. Regular maintenance and servicing of the equipment.</td>
</tr>
</tbody>
</table>
12. REFERENCES

b Radiation Shielding for Diagnostic X-rays, BIR/IPEM 2000.
c Management of Sources of Ionising Radiation - Guidance, Health and Safety Services, November 2016.