The SACGM Compendium of guidance

Part 4: Genetic modification work that involves plants (including plant-associated genetically modified microorganisms)
Table of contents

4.1 Genetic modification work that involves plants ......................... 4
Overview ........................................................................................................ 4
Scope ............................................................................................................... 5
Definitions .................................................................................................... 6
Risk assessments .......................................................................................... 7
  Risk assessment procedure ........................................................................ 8
  Level of detail required .............................................................................. 8
  Activities likely to raise safety issues .......................................................... 10
Containment and control............................................................................... 10
  Notification requirements ........................................................................... 11

4.2 Risk assessment of activities with plant-associated GMMs ............ 13
Overview ........................................................................................................ 13
Risk assessment for the environment ............................................................. 14
  Mechanisms by which the GMM might pose a hazard to the environment ... 14
  Hazards associated with the recipient organism ........................................ 15
  Hazards associated with inserted genes ...................................................... 17
  Hazards arising from the alteration of existing traits .................................... 18
  Transfer of harmful sequences between organisms .................................... 20
  Phenotypic and genetic stability ................................................................. 21
  Likelihood that the GMM will be a risk to the environment ....................... 22
  Assessment of likelihood .......................................................................... 22
  Consideration of the ability of the GMM to become established ............... 23
  Consideration of the probability that rare events will occur ..................... 23
  Assessment of the possible consequences ............................................... 24
  Determination of risk ................................................................................ 25
  Containment level needed to sufficiently protect against harm to the environmen... 25
Risk assessment for human health ................................................................. 26
  Mechanisms by which the GMO could be a risk to human health .............. 26
  Likelihood that the GMM will be a risk to human health ............................ 27
  Containment level needed to sufficiently protect human health ................ 28
Review of procedures and control measures ................................................. 28
Assignment of GM Activity Class ................................................................ 29
  Further aspects of activity classification .................................................... 32

4.3 Containment and control of activities with GMMs in a plant growth facility ........................................................................................................ 33
Containment Level 1 for GMMs in a plant growth facility ............................ 35
  Building ...................................................................................................... 35
  Equipment .................................................................................................. 35
  System of work ......................................................................................... 36
  Waste ......................................................................................................... 38
  Other measures .......................................................................................... 38
Containment Level 2 for GMMs in a plant growth facility ............................ 39
  Building ...................................................................................................... 39
  Equipment .................................................................................................. 39
  System of work ......................................................................................... 41
  Waste ......................................................................................................... 43
  Other measures .......................................................................................... 44
Containment Level 3 for GMMs in a plant growth facility ............................ 45
  Building ...................................................................................................... 45
  Equipment .................................................................................................. 46
4.4 Risk assessment of work with genetically modified plants ........52

Overview .................................................................................................................. 52
Risk assessment for the environment ...................................................................... 52
Mechanisms by which the GMO might pose a hazard to the environment .......... 53
Capacity to survive, establish and disseminate ...................................................... 53
Hazards associated with the inserted gene/element .............................................. 54
Transfer of harmful sequences between organisms .............................................. 56
Phenotypic and genetic stability ............................................................................ 57
Likelihood that the GMO will be a risk to the environment .................................. 57
Assessment of likelihood ..................................................................................... 58
Assessment of consequence .................................................................................. 60
Determination of risk ............................................................................................ 61
Containment level needed to sufficiently protect against harm to the environment 61
Risk assessment for human health ........................................................................ 62
Mechanisms by which the GMO could be a risk to human health ....................... 62
Likelihood that the GMO will be a risk to human health ....................................... 63
Control measures needed to sufficiently protect human health ........................... 63
Review of procedures and control measures ....................................................... 64
Assignment of final containment measures .......................................................... 65
A guide to assigning containment levels for activities with GM plants ................ 65

4.5 Containment and control measures for activities with genetically modified plants .................................................................................................................. 68

Overview .................................................................................................................. 68
Building .................................................................................................................... 69
Equipment ............................................................................................................... 69
System of work ....................................................................................................... 70
Waste ....................................................................................................................... 71
Additional control measures .................................................................................. 71
Pollen control measures ....................................................................................... 72
Seed control measures ........................................................................................... 72

Example GM risk assessments .............................................................................. 73
Example GM risk assessment: Analysis of pollen-specific promoters in Arabidopsis 73
Example GM risk assessment: Expression of peptides in plants using a plant virus 76

Further information ............................................................................................... 79
4.1 Genetic modification work that involves plants

Overview

1. The Genetically Modified Organisms (Contained Use) Regulations 2000 and the Environmental Protection Act 1990 (EPA) require that suitable and sufficient assessment of the risks to human health and the environment be carried out for activities involving the genetic modification of organisms. The primary role of the risk assessment is to determine the appropriate control measures that are needed to afford maximum protection to both human health and the environment. This, in turn, will determine the notification requirements for the proposed work.

2. For many activities that involve plants, or microorganisms associated with plants, the risks to human health will be outweighed by the potential for harm to the environment. Taken together, both the Contained Use Regulations and the EPA require that appropriate measures be taken to ensure that genetically modified (GM) plants or plant-associated genetically modified microorganisms (GMMs) do not cause harm to either human health or the environment. By following the advice and measures set out in this guidance, you will be doing everything that is reasonably practicable to comply with the legislation for GM activities involving plants carried out in containment.

3. The Genetically Modified Organisms (Deliberate Release) Regulations 2002 and the Environmental Protection Act regulate activities where a genetically modified organism (GMO) is intentionally released from someone’s control into the environment. A GMO is considered ‘released’ if someone deliberately allows it to pass from their control into the environment without specific measures to minimise contact or harm to the general population and the environment. Under the Deliberate Release Regulations, an application for consent must be submitted to the Department for the Environment, Food and Rural Affairs (Defra). Any GMO must be authorised before it can be released into the environment or marketed within the European Union. For further information on the deliberate release regime and the application procedure, contact the GM Policy and Regulation Unit, 3/F6 Ashdown House, 123 Victoria Street, London SWE1 6DE (Tel: 08459 33 55 77, e-mail: gm@defra.gsi.gov.uk).

4. There are also controls and restrictions on the import, movement and keeping of plants, plant pests and other material (eg soil) in order to help prevent the introduction and spread of harmful organisms in the UK. The Plant Health (England) Order 2005 implements these controls in England and Wales. Similar arrangements apply in Scotland and Northern Ireland. Under the Plant Health Order, work involving genetically modified
plant pests and pathogens no longer requires notification to Defra Plant Health Division. However, if you wish to import plant pests and pathogens or receive imported plant pests and pathogens from other institutes you may still require a plant health licence. For further information on all aspects of Plant Health Licensing in England and Wales, contact Plant Health Division, Foss House, Kings Pool, 1-2 Peasholme Green, York, YO1 2PX (Tel: 01904 455174; e-mail: planthealth.info@defra.gsi.gov.uk). For further information on Plant Health Licensing in Scotland, contact The Licensing Officer, Scottish Agricultural Science Agency, 1 Roddinglaw Road, Edinburgh, EH12 9FJ (Tel. 0131 244 8957; e-mail: plant_health_licensing@sasa.gsi.gov.uk).

Scope

5. The following guidance is intended for users wishing to undertake the risk assessment of activities involving the genetic modification work involving plants in containment. The document is divided into major sections that cover certain activities:

- 4.2 to 4.3: genetic modification of microorganisms that are associated with plants; and
- 4.4 to 4.5: genetic modification of plants.

![Diagram showing the hierarchy of activities and guidance](image)

**Figure 4.1.1** How to use Part 4 guidance on GM work involving plants
6. For each major activity type there is both guidance on the risk assessment of the activity, and detailed guidance relating to the assignment and implementation of containment and control measures. Users must decide which section of the guidance is most relevant for their purposes. All users should read this section (Section 4.1). For activities involving plant-associated GMMs, users should read Sections 4.2 and 4.3. For activities involving GM plants, users should read Section 4.4 and 4.5. For those wishing to undertake activities involving both GMMs and GM plants, both sections will be relevant (see Figure 4.1.1).

7. In some cases, GM plants may be exempt from majority controls under the Contained Use Regulations. For example, self-cloned plants that are unlikely to cause harm to humans are exempt, except for the requirements of regulation 17. This requires that exposure of humans and the environment, and the level of harm to humans as a result of activities involving GMOs, be reduced to the lowest level that is reasonably practicable. Self-cloning is defined as the insertion of all or part of a sequence, whether or not it has been altered by enzymatic or mechanical processes, into cells of the same or closely related species which could naturally exchange genetic material. Self-cloning could involve the use of recombinant vectors to reinsert the sequences provided that there are no genetic elements other than those designed for vector structure, replication, or maintenance. (See A guide to the Genetically Modified Organisms (Contained Use) Regulations 2000 for further information.)

Definitions

8. For the purposes of this guidance, the term ‘plant’ is used in the broadest sense and covers higher plants, including both vegetative and reproductive organs (ie spores, seeds, pollen, bulbs, rhizomes, tubers) as well as mosses, ferns, algae and aquatic species (for example, duckweed).

9. The terms ‘microorganisms associated with plants’ and ‘GMM’ include both beneficial organisms and those considered to be plant pests. Beneficial organisms include mutualistic species such as mycorrhizal fungi, symbiotic bacteria, anti-fungal bacteria (eg fluorescent pseudomonads) and endophytic species. Plant pests are defined as organisms liable to infect plants/plant products and include pathogens of plants such as viruses, viroids, satellites, bacteria, fungi and mycoplasma, as well as plasmodiaphorids acting as intermediate vectors for viruses.

10. The term ‘vector’ refers to a microorganism used to deliver genetic information to a plant. This should not be confused with ‘intermediate vector’, which is used to describe the
carrier of a plant pathogen, such as an insect. More complex organisms that are considered plant pests, such as insects and nematodes are not covered here. Users are referred to those guidance sections within the Compendium that deal with the risk assessment and containment of GM animals.

11. Legal requirements will be stated clearly as such, with the use of the words ‘regulatory requirement’, ‘required’ or ‘must’. In cases where the word ‘should’ is used, the guidance highlights approaches that can otherwise be used to achieve the appropriate standards. These approaches are only illustrative and users may adopt other approaches so long as the standards set by the Regulations are met.

12. The following terms do not have legal definitions and the explanations below are intended to aid understanding:

- **Laboratory**: A room in which organisms are handled or manipulated that is not a plant growth facility
- **Plant growth facility**: A structure, whether man-made or natural, permanent or impermanent that is designed and used principally for growing plants in a controlled and protected environment.
- **Required where and to extent the risk assessment shows it is required**: This indicates that the need for a particular measure is determined by the risk assessment. If the risk assessment specifies that a measure is needed for human health or environmental protection, its use is mandatory
- **Competent authority**: The body with enforcing jurisdiction over the Contained Use Regulations. In England and Wales the competent authority includes the Health and Safety Executive (HSE), the Secretary of State and the Department for Environment, Food and Rural Affairs (Defra). In Scotland the competent authority includes HSE, the Scottish Executive Environment and Rural Affairs Department (SEERAD) and the Scottish Ministers. Northern Ireland has its own separate competent authority. When seeking approval from the competent authority for particular actions, users should contact HSE in the first instance.

**Risk assessments**

13. Schedules 3 and 4 of the Contained Use Regulations set out the steps that should be included for the risk assessment of both GMMs and GMOs other than microorganisms (in this case, GM plants). Many of the issues raised in this guidance are exemplified using cases of GM work involving vascular flowering plants, bacteria and viruses. This merely reflects the balance of work that is undertaken in the UK and the principles of risk
assessment set out are valid and applicable to GM activities involving all plants microorganisms associated with them.

**Risk assessment procedure**

14. The following procedure represents a recommended model for GM risk assessments and for the assignment of containment and control measures. The procedure is reflected in the structure of the guidance. This suggested format includes the steps required for risk assessment under the Regulations, although it is not intended to be prescriptive:

- **Risk assessment for the environment.** The identification of potential mechanisms by which the GMO might pose a hazard to plant health or the wider environment. Consideration of the potential severity, likelihood of occurrence and considerations of uncertainty. Establishment of a containment level that is sufficient to protect the environment.
- **Review of procedures and control measures.** Implementation of any additional control measures necessary to safeguard both the environment and human health.
- **Determination of notification requirements.** For work with GMMs, this will require the assignment of GM Activity Class (1, 2, 3 or 4) and declaration of extra measures or derogations needed (see below).

15. It is a regulatory requirement to assess the risks and employ measures to minimise the chances of exposure or inadvertent release into the environment. It is important to identify all possible hazards to human health and the environment, especially any routes by which the GMO could be released. This will include waste disposal, equipment failure, and dissemination by humans or mechanical transmission of a plant pathogen. However, in practice these organisms should be assessed in a way that is commensurate with the actual hazards posed. There is a need for an informed and pragmatic approach, rather than an overcomplicated assessment and unwarranted control measures.

**Level of detail required**

16. Much of this guidance has been prepared to aid the risk assessment of activities where uncertainty as to the nature of the intended GMO necessitates more in-depth consideration. The level of detail required will vary for from case to case and will depend upon the nature of the hazards and the degree of uncertainty. Where a potential for harm is identified, a more detailed consideration of the risks associated with the activity should
be undertaken. Equally, less detail will be required for less hazardous work, such as work with GM plants that cannot survive in the UK or activities involving disabled GM plant pathogens, particularly where there are no host species present in the receiving environment.

17. Arguments must be clear, but need not be exhaustive. The final risk assessment must contain enough background information and detail to ensure that a reviewer with a limited understanding of the precise nature of the work will not require further information to comprehend the nature of any hazards. Supplementary information can take the form of references to scientific literature and reports. All feasible potential hazards should be acknowledged and information should be based upon established scientific knowledge wherever possible. Any uncertainty should be acknowledged and dealt with appropriately; the lack of scientific evidence for a particular hazard being legitimate should not automatically be taken to mean that it does not exist.

18. All GM risk assessments should be reviewed regularly and be updated in the light of new scientific knowledge or where there has been a change in the nature of the activity (including a change in scale or any new procedures and containment measures). Documentation is important for GM work and all data should be recorded and used to supplement the risk assessment where appropriate. The risk assessment should consider the purpose of the work. For example, if the GMO is a crop species and the ultimate intention is for it to be released into the environment, then the assessment should be supplemented with relevant data obtained while it is in containment. This will aid the application for license to release that GMO under the deliberate release regime.

19. The risk assessment should include determination as to whether or not the GMO or its descendants could cause adverse effects if it escapes. In the majority of cases, containment and control measures will therefore be implemented primarily to prevent release of the GMO into the environment or to limit the impact of environmental harm. However, containment and control measures must be assigned on the basis of both environmental and human health protection. Whether or not those measures implemented for environmental protection are also sufficient to protect human health should be carefully evaluated and will be dependent upon the nature of the GMO itself. For example, GM plants used in the biomanufacture of pharmacologically active compounds may represent a greater risk to human health than will similar plants expressing genes to increase disease resistance.
Activities likely to raise safety issues

20. There are some types of work where particular caution should be exercised. These cases will generally involve work with GM plants that are able to persist in the regional environment and the handling of GM plant pathogens that are able to infect plant species growing in the UK, particularly if they are economically important crops. The following are examples of activities that warrant close scrutiny as they would represent environmental hazards in the event of an escape:

- GM plant species likely to disturb natural ecosystems, especially derivatives of naturally-occurring species that may have a selective advantage or could disrupt the soil ecology;
- plant-associated microorganisms with altered host interactions, including GM plant pathogens with altered tropism or host-range;
- GM plants, or microorganisms used to infect plants, that express potentially harmful biologically active products (commonly called ‘biopharming’ or ‘pharming’).

21. GM activities involving plants will usually take place in ‘standard’ plant-growth facilities, such as glasshouses. This guidance is also relevant to the use of ‘non-standard’ growth facilities, such as the growth of GM aquatic plants in specialised containment equipment or tanks. Furthermore, consideration should be given to the use of atypical containment measures, for example GM trees grown in cages. The provisions of this guidance for the containment of some activities involving plants may not be appropriate in all cases but may be better served by guidance relating to other classes of organism. For example, growth of microalgae in fermenters might be better covered by guidance relating to large-scale growth GMMs associated with humans/animals (see Part 3, Section 3.3). Similarly, work with GM insects, nematodes and other complex plant pests will be better served covered by GM animal guidance (see Part 5).

Containment and control

22. The Contained Use Regulations require that all activities involving genetically modified organisms use a combination of physical, chemical or biological barriers to limit contact with people and the environment. With respect to work with GM or ‘transgenic’ plants, they only cover protection of human health. Environmental protection aspects are controlled under Part VI of the EPA, which requires that all appropriate measures are taken to avoid damage to the environment that may arise from the escape or release from human control of GM plants. By contrast, the Contained Use Regulations require the application of containment and control measures to control the risks to both humans and
the environment with respect to activities with GMMs. Therefore, taken together, the Contained Use Regulations and the EPA require that appropriate measures be taken to ensure that GM plants or plant-associated GMMs do not cause harm to either human health or the environment.

23. There are no specific measures in the legislation that are laid down for work with GM plants. Both the EPA and Contained Use Regulations require that measures be used to reduce risks to humans or the environment to either ‘low’ or ‘effectively zero’. This guidance outlines practices and containment measures that are considered to be good practice.

24. By contrast, the Contained Use Regulations require the application of defined containment and control measures for work with GMMs, and these must be applied to any work that involves handling them (Schedule 8, Table 1a). In addition, the Regulations set out certain specific requirements for activities being undertaken in plant growth facilities (Schedule 8, Table 1b). In some cases the specified measures modify those for laboratory containment but in others they impose additional requirements. All measures are outlined in the integrated table of containment measures presented in this guidance (see Table 4.3.1).

**Notification requirements**

25. Regulation 9 of the Contained Use Regulations stipulates that the competent authority (HSE) be notified of the intention to begin work with any GMOs on the premises. If no previous GM work has taken place at the site, then a premises notification must be submitted to HSE. If appropriate, this can accompany an individual activity notification.

26. The risk assessment will establish the containment and control measures needed. This, in turn, will determine the notification requirements for individual activities.

- For activities involving GMMs, risk assessments are carried out under Schedule 3 and will require assignment of the work to GM Activity Class 1, 2, 3 or 4. Activities in Classes 2, 3 and 4 must be notified to the competent authority (HSE).
- For activities with GM plants, risk assessments for human health are carried out under Schedule 4. There is no formal requirement to assign a GM Activity Class, although this can be a useful means to determine what type of facility is appropriate (see below). Only activities generating a GM plant with a greater potential to cause harm to human health compared to the unmodified organism require notification. However, there remains the requirement to do an environmental risk assessment under the EPA.
27. Further information on the notification requirements can be found in Part 1 of the Compendium.
4.2 Risk assessment of activities with plant-associated GMMs

Overview

1. The following guidance concerns the risk assessment of activities involving genetically modified microorganisms that are associated with plants. This includes mutualistic or symbiotic microorganisms considered to be beneficial to plants, as well as those considered to be pathogens. Furthermore, microorganisms that have been engineered for use as biological control agents are also covered by this guidance.

2. The use of genetic modification has permitted the study of interactions between microorganisms and their host plants. This includes research into the mechanisms of pathogenesis, symbiosis and mutualism and the elucidation of plant gene functions. GM plant viruses in particular, have been exploited for both research and biotechnology applications. This is largely because transformation is only possible in a restricted number of plant species. However, plant viruses can be used to inoculate a wide range of plant species and host range can be altered. Furthermore, the use of plant virus vectors in this way overcomes the problem of position effect variegation, which occurs in GM plants that are modified by transformation.

3. For example, GM plant viruses can be used in the study of plant functional genetics by exploiting post-transcriptional gene silencing. Inoculation of a virus vector carrying a copy of the gene to be silenced triggers plant RNA-mediated defence mechanisms that counter viral threats resulting in the silencing of both the vectored gene and the cellular equivalent. This system has been dubbed virus-induced gene silencing (VIGS). GM plant viruses have also been heavily exploited for biotechnological purposes. GM plant viruses have been used to transform plants for the purposes of metabolic engineering and the expression of foreign genes, such as antigens for vaccine production and novel therapeutic products.

4. For most activities involving the genetic modification of plant-associated microorganisms, the primary considerations of the risk assessment will be given to the effects the GMM may have on plant species in the environment should it escape. This is likely to be the case for GM activities relating to the study of microbe–host interactions and plant functional genetics, as the potential ramifications for human health will be negligible. However, human health implications will require greater emphasis where activities involve genes that encode biologically active products, or products that may be toxic or allergenic. Therefore, the potential environmental impact of any GMM that can infect or interact with a plant or otherwise impact upon any environmental ecosystem (including microbial...
populations) will require careful assessment and control. However, it is important not to overlook the possible effects on workers or other humans who may be exposed.

5. Each part of the risk assessment will involve the following steps:

- hazard identification;
- assessment of likelihood of hazards being realised, including an assessment of the relative ‘fitness’ of the GMM;
- assessment of the consequences of hazards being realised;
- determination of risk that hazards will be realised;
- assign containment level to reduce the risks to ‘effectively zero’.

6. The risk assessment process should also include a consideration of the nature of the work and a review of the procedures, with additional control measures implemented where necessary. From this, the minimum containment requirements will be evident and a GM Activity Class must be set. This will determine the notification requirements for the work.

Risk assessment for the environment

7. The objective of the risk assessment is to determine the likelihood and the possible consequences of an accidental release of a GMM from containment into the environment. In a properly maintained and managed facility with the correct containment measures in place, the likelihood of such a release will be low. However, it is important to identify all possible hazards and consider any routes by which the GMM could be released (including waste disposal, equipment failure and spread by humans).

8. The risk assessment should consider both the environment surrounding the containment facility as well as the wider environment, especially if there is a possibility that the GMM could survive and disseminate. The Contained Use Regulations require consideration of whether there may be an adverse effect from interactions of the GMM with other organisms at the premises with which it is likely to come into contact. For instance, an insect-borne pathogen and its intermediate vector may be present in adjacent laboratories. Such instances might necessitate the implementation of additional controls.

Mechanisms by which the GMM might pose a hazard to the environment

9. During the hazard identification process, the factors to consider will include:
• hazards associated with the recipient microorganism. This will be particularly relevant where the organism being modified is a plant pathogen or is not indigenous to the UK and could disrupt microbial ecological balance;
• hazards associated with the inserted gene/element. This will be particularly relevant if the insert encodes a toxic product and could have adverse effects on animals, plant and soil ecology;
• hazards arising from the alteration of existing traits. This concerns the effects of the modification and will centre upon changes to the survivability and interactions with the host plant or other environmental organisms

**Hazards associated with the recipient organism**

10. The characteristics of the recipient strain that will be of relevance to the final GMM include pathogenicity, virulence, infectivity, toxicity, symbiosis, ability to colonise and ability to compete with indigenous microbes. If the recipient organism is pathogenic or mutualistic, then the GMM may also exhibit the same features, albeit potentially altered by the modification.

11. Particular care must be given to the assessment of work with pathogens that infect plants that are indigenous to the UK. Clearly there may be major economic risks to consider if work is undertaken on pathogens of plants that are grown commercially. Similarly, work on pathogens that infect indigenous plants or those grown ornamentally may also pose significant hazards to the environment.

12. In the event of a release, there is potentially a fine balance between the reduced pathogenicity of an attenuated pathogen and the ability to contain an outbreak of a virulent one. Clearly, if the host organism is present in the receiving environment, then an attenuated strain should be used if possible or otherwise practicable, as this will reduce the impact of pathological effects in the event of a release. Should a virulent microorganism be used, then careful consideration should be given to the possibility that the pathogen may persist in the environment. A pathogen with increased virulence that causes severe disease (or a hypervirulent pathogen) might fail to persist, as the disease will be ‘self-limiting’ due to local ‘fade-out’ of the host plant population. Conversely, a less virulent strain might be more able to persist and therefore spread further. If a hypervirulent pathogen is to be constructed or used, then this should be fully justified by the risk assessment and suitable controls implemented. These activities carry with them the risk of serious environmental impact and effects upon population structure and density of the host organism, as well as impact upon the wider ecology. Such considerations need to be carefully weighed and all hazards, including the possibility of severe disease and persistence, should be fully accounted for in the risk assessment.
13. There are a number of modification strategies that can be employed to disable a plant pathogen or study mechanisms of host interactions more safely. These approaches might include:

- deletion or mutation of genes that are essential for growth or replication;
- deletion or mutation of genes involved in pathogenesis;
- eliminate intermediate vector transmission by using non-transmissible isolates or altering/removing sequences required;
- study molecular mechanisms without using whole pathogen. For instance studying self-propagating viral RNAs (replicons).

14. The origin and mechanism of such attenuation should be well understood and will form an important part of the risk assessment. In assessing whether a GM plant pathogen is adequately disabled, the possibility of reversion or complementation should be considered. Furthermore, it should be confirmed that the GMM is disabled, or remains so, after modification.

15. The stability of the genetic modification should also be considered, particularly where there is the possibility that an attenuated or disabled GMM might revert to a wild type or pathogenic phenotype and become an environmental hazard. The likelihood of reversion will be dependent upon the mechanism of attenuation; deletion mutants are less likely to revert than point mutations or conditional lethal mutants. Therefore, the genetic stability of the modification is linked to phenotypic stability, especially where the modification restricts the GMM’s ability to survive and to spread.

16. An organism with a restricted capacity to survive will be under stress in the environment and there will be a strong selection pressure for the reversion of attenuating and disabling genetic lesions. The possibility that a GMM will be genetically unstable outside of the controlled conditions in which it was intended to exist should be taken into account and consideration given to any detrimental effects this might cause. In particular, careful consideration should be given to the use of disabled GM plant viruses in conjunction with transgenic plants engineered to complement the genes which are deleted from the viral genome (thus effectively using a ‘helper plant’). Such an approach could be used to generate disabled virus vectors, providing an enhanced measure of biological containment. This approach may, however, lead to a selective pressure for recombinant viruses to reacquire the essential genes from the transgenic plant.

17. Survivability of the organism will be a key attribute. If an organism is not capable of surviving for significant periods in the environment, as may be the case for many of the
disabled organisms used in containment, then none of the other hazard areas are likely to come into play. In many cases, a disabled GMM can probably be considered safe from an environmental standpoint as they are biologically, if not physically, contained. Conversely, if an organism can survive and perhaps disseminate in the environment, then other possible hazards should be considered. This means that alterations in pathogenicity, possible adverse effects of any inserted gene products will also need to be considered.

18. When assessing whether an organism might survive in the environment, it should be remembered that this includes all types of association with living organisms, as well as the possibility of persisting in soil, water or other sites.

Hazards associated with inserted genes

19. GMMs might be a hazard to the environment by virtue of the properties inherent to the genetic insert, even if the recipient microorganism poses no specific risk. For instance, the products of the inserted sequences may have the desired effect in the intended experimental system but nevertheless kill or be detrimental for environmental plant, animal or microbial species. This is particularly relevant for modified microorganisms that could infect plants and express the inserted gene within plant tissues.

20. Careful assessment will also be required for recipient microorganisms that can remain viable outside of a plant host and secrete potentially hazardous products into soil or water. It is important to consider any potentially harmful (or beneficial) effects that a GMM could have on microorganisms in the soil environment. For instance, a soil-borne bacterium expressing and secreting anti-fungal compounds could kill mycorrhizal fungi if it escaped and became established. Similarly a plant infected with a GMM encoding a product that could disrupt mechanisms of mutualism could harm the ecology.

21. It is also important to assess the potential for an encoded product to cause adverse effects in animal populations. These considerations primarily apply to those genes encoding products with biological activities, particularly if they are novel and not normally found in plants. Examples of such genes would include those encoding industrial, pharmaceutical, immunogenic, toxic or allergenic products, such as antigens from human or animal pathogens expressed for vaccine development. Such products could have adverse effects on humans and animals in the environment. In particular, if an infectious GMM could lead to expression of a gene encoding a toxic product in a plant eaten for food by animals, then populations might be reduced.

22. It is important to consider the properties inherent to the products of a heterologous gene insert in conjunction with the expected characteristics of expression. For instance, the
gene product might be allergenic or toxic to animals. If the gene is expressed in the leaves or edible parts of an infected plant, then an adverse effect due to contact with or ingestion by animals or humans might be possible. Should the expression of that product be restricted to root tissue, then the potential risks posed to grazing animals might be reduced. However, toxic products secreted by root systems or mycorrhizae might have adverse effects on soil microbial populations, symbiotic organisms and plant health. The non-coding regulatory regions and signal sequences present in the insert will affect the characteristics of expression. It is important that the effects of these are considered in addition to the biological activity of the expressed product.

23. Inserted genes might encode products with no specific activity, but nevertheless have a potentially harmful action within the GMM or due to interactions with the host. For instance, an inserted gene could encode a pathogenicity or virulence determinant. This could exacerbate a potentially harmful phenotype of a plant pest or confer pathogenicity on an organism that is otherwise harmless (see Hazards arising from the alteration of existing traits below). Furthermore, the insertion of an essential gene from the host plant into a GM virus vector can cause the modified virus to have harmful effects due to post-transcriptional gene silencing. If the virus is carrying an essential gene, this could have adverse effects on the growth of infected plants, overcome inherent resistance mechanisms or alter environmental tolerances.

**Hazards arising from the alteration of existing traits**

24. The modification may lead to adverse effects arising as the result of alteration of existing traits. This could represent an exacerbation of a pathogenic phenotype, or disruption of a mechanism that is beneficial to plant, animal or microbial populations. This may arise as the result of the product of inserted gene acting alone (see Hazards associated with genetic inserts above) or in combination with other microbial determinants. Alternatively it is possible that modification of normal microbial genes may also alter pathogenicity. In identifying any hazards associated with the modification to a microorganism, the following points should be considered (the list is not exhaustive):

25. **The modification alters survivability or stability.** A key question will be whether the modification could alter the GMM’s ability to survive in the environment and this will affect whether or not other potential risk factors will come into play. Organisms will have varying degrees of survivability. However, modifications may impact upon tolerances to UV, temperature fluctuations and dehydration.

26. **The modification alters infectivity or pathogenicity.** Consideration should be given to modifications that might affect the pathogenic mechanisms of a GMM. For instance, the
insertion of a known pathogenicity or virulence determinant into a microorganism might increase the potential for that organism to cause harm in the event of environmental exposure. Special consideration should be given to the insertion of genes encoding products involved in pathogenesis into microorganism that are not normally harmful.

27. There are many possible mechanisms by which the inherent pathogenicity of the host organism can be affected and these may not be directly related to the harmful properties of the encoded products. Unforeseen effects may also be observed while making seemingly innocuous alterations to the genes of the organism. This is particularly relevant to complex systems such as bacteria where genes are often part of a cluster or encode a component of a regulatory network. Fungal gene regulation systems are also complex, but are poorly understood compared to bacteria. The modification or deletion of one gene may have ramifications beyond the loss or alteration of the known functions of the encoded products. The expression of other genes may be affected and biosynthetic or signalling pathways may be disrupted, resulting in altered traits.

28. **The modification affects host plant defence mechanisms.** The modification of genes that are involved in subverting host defence mechanisms might affect the susceptibility of plants to infection, constituting an alteration in pathogenesis. For instance, products that are secreted by bacteria can be important determinants of pathogenesis in bacteria and may suppress plant defence mechanisms.

29. **The modification alters tissue tropism or host range.** Modifications that could alter the types of plant tissue affected, or alter host range will require careful consideration. There are many factors that might change the natural tropism or host range of a microorganism. (The term ‘tropism’ is used here for the purposes of consistency with other parts of the Compendium. This may be taken as meaning the intentional alteration of types and location of tissues affected.) Pathogenic bacteria may also have determinants that affect host range or the ability to colonise certain sites. During the risk assessment, careful consideration should be given to the possible effects on tissues or host plants not normally affected or colonised by the recipient organism and whether the normal route of transmission of the organism has been altered. It is recognised that the consequences of changes in tropism or host range are difficult to predict. In assessing the risk of manipulations designed to modify tropism, particularly in the case of replication-competent viruses, it should be assumed that they would require higher level of containment as compared to the recipient strain until the properties of the GMM are better understood.

30. **The modification alters transmissibility.** A clear distinction should be drawn between the movement of a microorganism within a plant, and transmission between plants. Both
may present a hazard, although the risk assessment of the two scenarios may be very different.

31. In general, the insertion of gene sequences that are known to facilitate the migration of plant-associated microorganism within a host will potentially create a GMM that is more harmful. Careful consideration should also be give to modifying sequences that will affect the transmission between plants, for example, the DAG motif in potyvirus capsid proteins. Generally speaking, modifications that are expected to bestow additional transmissibility functions should be assumed to result in a GMM that is more hazardous.

Transfer of harmful sequences between organisms

32. There are many mechanisms by which sequences may be transferred between organisms and the factors that affect the frequency of such events and the likelihood of a harmful consequence are complex. Such issues must be carefully considered in the risk assessment. It is important to consider the potentially harmful consequences of sequences inserted into a GMM being transferred to other organisms, or that the GMM itself may acquire sequences that might result in adverse effects in the environment.

33. With the notable exception of viruses, the transfer of genetic information present on the genomes of microorganisms is much less likely than if they are present on an episomal form, such as a plasmid or cosmid. The frequencies of successful horizontal gene transfer in the environment are low, even for genes located on plasmids. However, there is a finite possibility that any gene may be transferred, even if the mechanism is just a passive one involving release of DNA from senescing cells. Therefore, the primary consideration needs to concentrate on the possible consequences, rather than on the likelihood of transfer.

34. The survival of a GMM in the environment, either independently or in association with a plant host, may affect the likelihood of nucleic acid sequence transfer to another organism. Consideration should be given to the possibility that there could be selective pressure in the environment that might contribute to the persistence of a sequence or gene and its acquisition by an organism. There are a number of mechanisms whereby sequences could be transferred or acquired. The possibility that one or more of the following mechanisms might contribute to a potentially harmful sequence being acquired by another organism should be considered:

35. **Sequence mobilisation in bacteria.** This is particularly pertinent to sequences that are present in a mobilisable or episomal form, such as a bacterial plasmid. Sequences present on bacterial chromosomes are less likely to be transferred.
36. **Introduction of sequences into plant cells.** Transformation of plants with *Agrobacterium* results in stable integration of genetic material into plant chromosomes. The genomes of some DNA plant viruses can also become inserted into plant genomic DNA.

37. **Recombination between related viruses.** While the phenotype of the GM virus that is under construction is the primary consideration, some thought should also be given to the possibility that harmful sequences may be transferred as the result of a recombination event. Recombination between plant viruses is common and could lead to persistence of an inserted sequence in a replication competent virus. For example, recombination is observed in geminiviruses and has been correlated with enhanced pathogenicity. Interspecies hybrids will often result in a less virulent virus but some may be more virulent than their progenitors. If a recombination event could give rise to a harmful derivative of a GM plant virus by restoring previously deleted or mutated genes, then great care should be taken to prevent cross-contamination in the laboratory or plant growth areas.

38. **Reassortment between segmented plant viruses.** Some viruses have segmented genomes and can achieve genetic variability in nature by ‘swapping segments’ with related viruses. It is important to consider that cross-contamination in the laboratory or co-infection of the GMM with a wild-type virus in the environment could result in the generation of novel strains that could be regarded as harmful.

**Phenotypic and genetic stability**

39. The stability of the genetic modification should also be considered, particularly where there is the possibility that a GMM attenuated or disabled for growth might revert to a wild type or pathogenic phenotype and become an environmental hazard. Therefore, the genetic stability of the modification may be linked to phenotypic stability, especially where the modification restricts the GMM’s ability to survive and to spread.

40. The loss of an inserted gene from a GMM is unlikely to constitute a hazard. However, inherent genetic instability leading to incorporation of genes elsewhere in the genome of the same GMM could be hazardous. An organism with a restricted capacity to survive will be under stress in the environment and there will be a strong selection pressure for the reversion of attenuating and disabling genetic lesions. The possibility that a GMM will be genetically unstable outside of the controlled conditions in which it was intended to exist should be taken into account and consideration given to any detrimental effects this might cause.
**Likelihood that the GMM will be a risk to the environment**

41. The initial stages in the risk assessment process thus far involve identifying those features of the GMM that have the potential to cause harm and the mechanisms by which these hazards could be realised. While it may be possible to draw up theoretical scenarios whereby the GMO may be hazardous to the environment, the chances of them being realised should be evaluated and understood.

42. It is therefore important to consider the likelihood that the identified hazards will be manifested. Factors that come into play are: (i) judgements as to the overall fitness of the GMM; (ii) the probability that rare events may occur (e.g. the likelihood of gene transfer); and (iii) the severity of the possible consequences.

43. Estimating the likelihood of a harmful consequence being realised will be difficult where there is no firm data on which to base a judgement. In general, the weight given to information used in these considerations should reflect the quality of the supporting data. Where the likelihood of harm is poorly understood, a cautious approach should be adopted until evidence to the contrary has been obtained.

**Assessment of likelihood**

44. A key factor in whether or not the hazard will be realised is the environment into which the GMM would be released. It is therefore important to consider the nature of the GMM in relation to the receiving environment. There may be characteristics of the receiving environment that will contribute to the likelihood of the hazard being manifested, for example the presence of a suitable host species or soil conditions. For the purposes of using the risk determination matrix, likelihood can be expressed as ‘high’, ‘medium’, ‘low’ or ‘negligible’.

45. Even if the GMM could conceivably survive, become established and disseminate in the environment, it may be that the environment itself would not be able to support it. For example, GMMs derived from pathogens of plants that are not present in the UK would have limited capacity to become disseminated, even if it could survive for extended periods. Similarly, the transmission of some pathogens may require an intermediate vector that might not be present in the UK. The possibility of unknown hosts or intermediate vectors should be accounted for, as should the longer-term possibility that such hosts and vectors will become native to the UK, for example, as a result of climate change. However, in general, the risk that such GMMs could be a hazard to the environment will be negligible.
Consideration of the ability of the GMM to become established

46. An assessment should be made as to the ability of the GMM to become established, how efficient it will be and its ability to spread within a host, population or ecosystem. This represents an evaluation of the ‘fitness’ of a GMM and should be based upon available scientific knowledge. Any uncertainty should be acknowledged and the precautionary principle followed.

47. The concept of fitness is difficult to define but will clearly be important in assessing the potential for a GMM to cause harm if there were to be a breach of containment. For instance, over-expression of a toxin in a bacteria or fungus may make the GMM more hazardous than the recipient strain, but the over-expression of that toxin might be deleterious to the metabolism of the organism.

48. An example relating to fitness has been demonstrated with a number of GMM systems, as there is a tendency for inserted sequences to be deleted. The loss of a gene that confers environmental tolerances would therefore reduce the potential for spread and render the virus less fit. However, extra gene carriage should not automatically be presumed to reduce GMM fitness.

Consideration of the probability that rare events will occur

49. It is often possible to assign a frequency to a given event, for example, mutation, recombination or sequence mobilisation rates. Often, this can take the form of a precise numerical frequency obtained in-house or through published data.

50. In many cases, precise evaluation will not be possible or properly supported. An approximate, semi-quantitative or descriptive assessment of the frequency, based upon experience with similar GMMs or techniques, could be used in these cases. For example, the likelihood of an attenuated or disabled GMM reverting to wild-type status can be assessed on the basis of the number of discrete events that would need to take place, ie the more events needed, the less likely it is that reversion will occur.

51. However, it should not be assumed that failure to observe an event is evidence that it does not occur. As part of such considerations it should be recognised that microorganisms often have extremely short generation times and adapt to specific environments and selective pressures rapidly.

52. Mutant genomes are continually being generated and the effects of selection pressures should be assessed. For example, although variants will be often be maintained at low
frequencies by negative selection, in a situation where a microorganism can replicate in an environment that differs from that in which it is normally found, the probability of one of the genetic variants becoming dominant will be increased. When undertaking risk assessments of GMMs it is important to have some awareness of this genetic variability. Even if the GMM that is initially constructed is not well adapted to growth in a particular environment or host, there is a possibility that it will adapt as new variants arise. Therefore, it is necessary to proceed with caution and use defective recipient strains wherever possible. This will virtually eliminate problems arising from genetic variability.

53. When estimating the probability and frequency of events, consideration should also be given to the number of organisms that might be involved in the incident. This will depend on the nature of the experiment. However the probability that a hazard will be realised will often depend on the number of GMMs that are being handled and, consequently, the number that could escape.

Assessment of the possible consequences

54. After the likelihood of all hazards is assessed, the consequence of each hazard should be estimated. Again, the consequence will depend to a very large extent on the potential receiving environment. In particular, the presence of compatible host plants or species with which the GMM may be able to compete will be important considerations.

55. Evaluation of the magnitude of potential consequence is difficult since there is inevitably a degree of judgement involved, although a qualitative appraisal of the impact on other species or ecosystems should be possible. For the purposes of using the risk determination matrix Table 4.2.1, consequences could be described as being ‘severe’, ‘modest’, ‘minor’, or ‘negligible’. The following descriptions may help:

- **Severe consequence**: a major change in the numbers of one or more species leading to negative effects on the functioning of the ecosystem and/or other connected ecosystems (for example, significantly altering the turnover of biomass, or supply of nutrients to crops). It is unlikely that the changes would be easily reversible.

- **Negligible consequence**: no measurable change in any population eg plant, animal or microbial, in the environment or in any ecosystem function. (This does not preclude some fluctuation in indigenous populations as long as this is within the range of that which could be expected naturally.)

56. It should be borne in mind that even if the consequences of a hazard being realised are deemed ‘severe’, if the probability of the hazard being manifested at all was ‘negligible’ then there is ‘effectively zero’ risk of harm. Likewise if the consequence of a hazard were
‘negligible’ or ‘minor’, then even if the probability of its manifestation were ‘high’ the risk of harm would still be ‘low’ (see Table 4.2.1).

57. However, a cautious approach to risk determination is advised. In situations where the probability of the hazard being manifested was ‘negligible’, should there be a ‘severe’ consequence to the identified hazard, then more stringent containment than would otherwise be appropriate for an ‘effectively zero’ risk of harm might be prudent. A balanced view of the risks is therefore required.

**Determination of risk**

58. The following determination matrix can be used to estimate the level of risk. This matrix is provided as a tool and is not intended to be a definitive measure of risk.

<table>
<thead>
<tr>
<th>Likelihood of hazard</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>Negligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>Effectively zero</td>
</tr>
<tr>
<td>Modest</td>
<td>High</td>
<td>Medium</td>
<td>Medium/low</td>
<td>Effectively zero</td>
</tr>
<tr>
<td>Minor</td>
<td>Medium/low</td>
<td>Low</td>
<td>Low</td>
<td>Effectively zero</td>
</tr>
<tr>
<td>Negligible</td>
<td>Effectively zero</td>
<td>Effectively zero</td>
<td>Effectively zero</td>
<td>Effectively zero</td>
</tr>
</tbody>
</table>

*Table 4.2.1 Risk determination matrix*

59. It may be necessary to evaluate whether any specific control measures are required to adequately protect the environment. Containment measures should be applied until the risk of harm is ‘effectively zero’. Further guidance on containment measures to protect both the environment and human health can be found below.

**Containment level needed to sufficiently protect against harm to the environment**

60. It is recommended that the minimum containment level (Containment Level 1, 2, 3 or 4) that is necessary to protect the environment be set. At this stage, it is only an estimate of the containment measures that will be required solely for the purpose of preventing release of the GMM or to minimise the likelihood that it will become a threat to the environment. Factors that may be relevant to this include:
• containment measures required by any plant health license needed for work on the recipient microorganism where it is an unmodified plant pathogen;
• any identified hazards arising as a consequence of the genetic modification, the severity of any harmful consequences and the likelihood that they might occur (determination of the risk of harm, see above).

61. If there are no prescribed containment measures for the recipient organism, then a judgement should be made about whether the GMM will be a risk to the environment. If all risks are deemed to be ‘low’ or ‘effectively zero’ then no specific measures will be required. However, if any risk exceeds this level then control measures should be implemented such that the risk of harm to the environment is reduced to ‘low’ or ‘effectively zero’.

62. Users should judge which measures listed in the appropriate tables of containment measures in Schedule 8 to the Contained Use Regulations (which are reproduced in Section 4.3) are appropriate for containment of the GMM. The containment level can be set accordingly to safeguard the environment. It is recognised that there is a degree of judgement required in setting ‘risk values’ and containment measures. Specific advice on risk assessment and containment is available from HSE.

**Risk assessment for human health**

63. It is recognised that for many activities with GM plant-associated microorganisms, the risk to humans will automatically be low or effectively zero. The objective is to identify any plausible hazards to human health and then to assess the likelihood and potential severity of the consequences, should the hazards be realised. Where a hazard is identified, this will most likely be associated with modifications that result in production of a toxin or allergen. Biomanufacture may involve the transformation or transduction of a plant with a GMM, resulting in the production of pharmacologically or immunologically active substances.

*Mechanisms by which the GMO could be a risk to human health*

64. As for the environmental risk assessment, the hazard identification process must include considerations of potentially harmful or adverse effects upon human health that would be mediated by the recipient organism, the products of any inserted genes or the predicted properties of the final GMM. However, assessments should concentrate on hazards arising from modification, rather than those associated with the recipient organism.
65. The majority of human health hazards will most likely arise where toxic products are secreted by a GMM. Alternatively, hazards may arise as a result of modifications that alter properties of an infected plant. Using a GMM as a vector in plants that express biologically active compounds might them more toxic or allergenic.

66. Where a potential for harm to humans is identified, consideration should be given to whether direct contact with GMM-contaminated material, or with transduced plant materials (eg leaves, sap or pollen) might represent a hazard. Consideration may also need to be given to the potential for the products to be expressed in different plant tissues, the consequent routes of exposure and the possibility that these may be altered.

67. Consideration should also be given to the possibility that microbial or plant post-translational processing may differ from mammalian cells. Therefore, potentially toxic or allergenic human or animal products expressed in microbial or plant systems might be processed differently and there may be unexpected effects due to presentation of novel confirmations.

**Likelihood that the GMM will be a risk to human health**

68. For each identified hazard an estimation of the likelihood of it being manifested and the seriousness of the consequence should be made in a similar way to the assessment of environmental risks outlined above. The GMM may have characteristics that might lead to a potential health hazard, but the chances of them being realised should be evaluated and understood. The risk determination matrix can be used as a tool to evaluate the magnitude of the hazards. This will require an estimation of both the likelihood and consequences of exposure. This matrix is not intended to be a definitive measure of risk and the specifics of each case should be carefully considered.

69. Once again, estimating the likelihood of a harmful consequence being realised will be difficult where there is no firm data on which to base a judgement and the weight given to information should reflect the quality of the supporting data. Where the likelihood of harm is poorly understood, a precautionary approach should be adopted until evidence to the contrary has been obtained. For the purposes of using the risk determination matrix, likelihood can be expressed as ‘high’, ‘medium’, ‘low’ or ‘negligible’.

70. Similarly, evaluation of the magnitude of potential consequence may be difficult as it is inevitable that this will involve a degree of judgement. However, a qualitative appraisal of the impact on humans should be possible. For the purposes of using the risk
determination matrix, consequences could be described as being ‘severe’, ‘modest’, ‘minor’, or ‘negligible’.

**Containment level needed to sufficiently protect human health**

71. It is recommended that the minimum containment level (Containment Level 1, 2, 3 or 4) that is necessary to protect human health be set. At this stage, it is only an estimate of the containment measures that will be required solely for the purpose of safeguarding the well-being of those who may come into contact with the GMM.

72. The measures implemented for environmental protection may be adequate to protect human health. In many cases, the principles of good occupational safety and hygiene and good microbiological practice will also be sufficient for this purpose. These principles are detailed in Part 3, Section 3.1. However, it may be necessary to evaluate whether any specific control measures are required to protect human health. If necessary, containment measures should be applied until the risk of harm is ‘effectively zero’. It is a requirement of the Contained Use Regulations that all measures deemed by the risk assessment as necessary for the protection of human health be implemented.

73. Users should judge which measures listed in the appropriate tables of containment measures in Schedule 8 to the Contained Use Regulations (which are reproduced in Section 4.3) are required to minimise harm to workers exposed to the GMM. The containment level can be set accordingly.

**Review of procedures and control measures**

74. The requirements of the final containment level must be sufficient to control all the potential harmful properties of the GMM and offer sufficient protection for both the environment and human health. All risks must be reduced to ‘low’ or ‘effectively zero’. The containment and control measures identified so far for environmental and human health protection only broadly define those needed as a function of the properties of the GMM itself.

75. The nature of the activity will also affect the level of risk. Therefore, it is important to take into account the nature of the work or any non-standard operations that might increase the likelihood of release or risk of exposure. For example, large-scale growth or harvest of a GMM will often mean that large amounts of the organism will be handled, which may result in increased likelihood of release and/or exposure.
76. If any such operations or activities are likely to generate risks that are not accounted for in the minimum containment measures already applied in reaction to the risk assessments for the environment and human health, then additional control measures should be applied. Equally, it may be that as a result of the nature of the activity, the nature of a risk that is inherent to the GMM itself is diminished. For example, if GMMs are cultured in a sealed system, then exposure to workers might be much less likely. In these cases, certain control measures might not be required.

77. The person responsible for the work should be satisfied that the local rules covering the use of laboratories or plant growth facilities are adequate to minimise or prevent viable GMMs being released from the containment facility. Moreover there should be a programme of internal inspections and/or active monitoring to ensure that the local rules are satisfactorily implemented. All workers should be trained in good laboratory or glasshouse techniques before commencing work and should be fully aware of the potential hazards inherent to the activity. Access to the containment facilities should be limited, where appropriate, to authorised personnel and designated workers.

78. The maintenance schedule for protective apparatus such as safety cabinets and ventilation systems should be strictly adhered to. It is also important that the fabric of the facility and control measures (eg mesh guards on drains and vents) are regularly checked for possible breaches in containment. One of the major release routes will be via contaminated waste and it is therefore important that GMMs that pose an environmental hazard are adequately inactivated and appropriately disposed of. Further guidance on containment and control strategies and waste inactivation can be found in Part 3.

**Assignment of GM Activity Class**

79. A GM Activity Class must be assigned in relation to the control measures needed to protect both the environment and human health (ie Class 1, 2, 3 or 4) for work with GMMs. The measures that are indicated as necessary by the risk assessment must be applied.

80. The importance of the final activity classification is twofold:

- It determines the minimum containment and control measures that must be applied. For Class 1 activities, Containment Level 1 measures must be applied as a minimum. For Class 2 activities, Containment Level 2 and so on. The only exception to this is when the user has the agreement of the competent authority to not apply the full corresponding containment level.
• It determines the notification requirements for the activity (see Part 1 and Figure 1.0.2).

81. The risk assessment must be used to determine the appropriate control measures that are needed to afford maximum protection to both human health and the environment. The Contained Use Regulations state that ‘a person who undertakes an activity involving genetic modification of micro-organisms shall apply the containment measures set out in the applicable Table in Schedule 8, where and to the extent required in the column of the appropriate containment level’.

82. For activities with plants that involve handling GMMs, in addition to the measures set out in Schedule 8 Table 1b (Containment measures for activities involving genetic modification of microorganisms in plant growth facilities) the relevant containment measures from Schedule 8 Table 1a (Containment measures for activities involving genetic modification of microorganisms in laboratories) must also be applied. Therefore, users may wish to read Containment and control measures for laboratory activities involving genetically modified microorganisms in conjunction with this guidance (Part 3, Section 3.2). However, the table represented in this guidance has been integrated such that all relevant measures for activities with GMMs associated with plants are shown.

83. To decide on the final classification, users should therefore compare the measures warranted by the risk assessment with the integrated table of containment measures (Table 4.3.1). Where the required containment measures correspond to those from a single level of containment this process will be simple: a GM activity requiring Containment Level 2 will be GM Activity Class 2. There will be cases, however, where the required containment measures are a mixture from two levels, for instance, Containment Level 2 with the addition of one or two measures from Level 3. Where there is such a mixture of containment measures, the GM Activity Class will correspond to the higher level of containment indicated (which, in this case, is Class 3) and must be notified accordingly. However, derogation may be sought from HSE at notification to exclude those measures required for the higher containment level that are shown to be superfluous by the risk assessment. Further explanation of the classification system can be found in the A guide to the Genetically Modified Organisms (Contained Use) Regulations 2000.

84. Some control measures deemed necessary by the risk assessment may not be listed in the Schedule 8 containment level tables. The GM Activity Class is determined solely by those measures actually listed. The risk assessment must always take precedence and all measures identified as necessary must be applied (there is a general requirement for the exposure of humans and the environment to GMMs to be as low as reasonably
practicable and the principles of good microbiological practice and of good occupational safety and hygiene must also be applied).

<table>
<thead>
<tr>
<th>Risk assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼</td>
</tr>
<tr>
<td>Containment measures needed to control the risk</td>
</tr>
<tr>
<td>▼</td>
</tr>
<tr>
<td>GM Activity Class</td>
</tr>
<tr>
<td>▼</td>
</tr>
<tr>
<td>Containment measures that must be applied</td>
</tr>
</tbody>
</table>

85. In the majority of cases, the containment measures necessary to control the risk, the GM activity class and the minimum containment level to be applied will be the same:

<table>
<thead>
<tr>
<th>Containment measures needed to control risk indicate:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Level 2</td>
</tr>
<tr>
<td>▼</td>
</tr>
<tr>
<td>GM Activity Class is Class 2</td>
</tr>
<tr>
<td>▼</td>
</tr>
<tr>
<td>Containment Level 2 applied</td>
</tr>
</tbody>
</table>

86. The containment measures indicated by the risk assessment may consist of a mixture of measures from two different levels. In these cases, the higher level of containment will determine the GM Activity Class and must be applied. A request can be made to the competent authority at the time of notification for permission to use the mixture of two levels identified, but unless and until you have the agreement of the competent authority, you may not use a level of containment lower than that corresponding to the GM Activity Class.

<table>
<thead>
<tr>
<th>Containment measures needed to control risk indicate:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Level 2 plus additional measures from Containment Level 3</td>
</tr>
<tr>
<td>▼</td>
</tr>
<tr>
<td>GM Activity Class is Class 3</td>
</tr>
<tr>
<td>▼</td>
</tr>
<tr>
<td>Containment Level 3 applied</td>
</tr>
<tr>
<td>(with derogations for those measures which are not required, under agreement with the competent authority)</td>
</tr>
</tbody>
</table>
Further aspects of activity classification

87. Class 1 activities are described in the Contained Use Regulations as being of ‘no or negligible risk’. It is unlikely that any non-disabled plant pathogen could be deemed to be of ‘no or negligible risk’ (except where the host species is absent from the receiving environment) and such work will always be GM Activity Class 2 or higher. Since work with pathogens will almost invariably require at least some of the measures required at Containment Level 2 (e.g. an autoclave in the building; restriction of access) it would not normally be possible to assign the activity to Class 1.

88. The containment measures needed for work with pathogens of plants species not indigenous or present in the UK should be assessed on a case-by-case basis. However, if a GMM that is pathogenic and transmissible to plants that are present in the receiving environment is assigned to GM Activity Class 1, then it is probable that the risk assessment is inadequate and the activity may require notification to HSE as Class 2.

89. Remember that classification into a GM Activity Class does not necessarily mean that you will always have to apply all the measures from the associated containment level. If it is adequately justified by the risk assessment, derogation may be sought from HSE to exclude unwarranted measures.

90. Further guidance on the application and implementation of control measures at the various containment levels can be found below.
### 4.3 Containment and control of activities with GMMs in a plant growth facility

<table>
<thead>
<tr>
<th>Containment measures</th>
<th>Containment Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

#### Building

<table>
<thead>
<tr>
<th>M1</th>
<th>Permanent structure</th>
<th>required where and to extent the risk assessment shows it is required</th>
<th>required</th>
<th>required</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>Laboratory suite: isolation</td>
<td>not required</td>
<td>not required</td>
<td>required</td>
</tr>
<tr>
<td>M3</td>
<td>Laboratory: sealable for fumigation</td>
<td>not required</td>
<td>not required</td>
<td>required</td>
</tr>
</tbody>
</table>

#### Equipment

<table>
<thead>
<tr>
<th>M4</th>
<th>Surfaces impervious to water and resistant to acids, alkalis, solvents, disinfectants, decontamination agents and easy to clean</th>
<th>required for bench</th>
<th>required for bench</th>
<th>required for bench and floor</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>Entry via an airlock or a separate room with two interlocking doors</td>
<td>not required</td>
<td>required where and to extent the risk assessment shows it is required</td>
<td>required where and to extent the risk assessment shows it is required</td>
</tr>
<tr>
<td>M6</td>
<td>Negative pressure relative to the pressure of the immediate surroundings</td>
<td>not required</td>
<td>required where and to extent the risk assessment shows it is required</td>
<td>required</td>
</tr>
<tr>
<td>M7</td>
<td>Extract and input air from the laboratory should be HEPA filtered</td>
<td>not required</td>
<td>not required</td>
<td>HEPA filters required for extract air</td>
</tr>
<tr>
<td>M8</td>
<td>Microbiological safety cabinet/enclosure</td>
<td>not required</td>
<td>required where and to extent the risk assessment shows it is required</td>
<td>required, and all procedures with infective materials required to be contained within a cabinet/enclosure</td>
</tr>
<tr>
<td>M9</td>
<td>Autoclave</td>
<td>required on site</td>
<td>required in the building</td>
<td>required in the laboratory suite</td>
</tr>
<tr>
<td>M10</td>
<td>Control of contaminated run-off water</td>
<td>required where and to extent the risk assessment shows it is required</td>
<td>required so as to minimise run-off</td>
<td>required so as to prevent run-off</td>
</tr>
</tbody>
</table>

#### System of work

<table>
<thead>
<tr>
<th>M11</th>
<th>Access restricted to authorised personnel only</th>
<th>not required</th>
<th>required</th>
<th>required</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12</td>
<td>Specific measures to control aerosol dissemination</td>
<td>not required</td>
<td>required so as to minimise</td>
<td>required so as to prevent</td>
</tr>
<tr>
<td>M13</td>
<td>Shower</td>
<td>not required</td>
<td>not required</td>
<td>required where and to extent the risk assessment shows it is required</td>
</tr>
<tr>
<td>M14</td>
<td>Protective clothing</td>
<td>suitable protective clothing required</td>
<td>suitable protective clothing required</td>
<td>suitable protective clothing required; footwear required where and to extent the risk assessment shows it is required</td>
</tr>
<tr>
<td>M15</td>
<td>Gloves</td>
<td>not required</td>
<td>required where and to extent the risk assessment shows it is required</td>
<td>required</td>
</tr>
<tr>
<td>Containment measures</td>
<td>Containment Level</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>------------------------------------------------------------------------------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Effective control of disease vectors such as insects, rodents, arthropods which could disseminate the GMM</td>
<td>required</td>
<td>required</td>
<td>required</td>
<td></td>
</tr>
<tr>
<td>Effective control of pollen, seeds and other plant material which could disseminate the GMM</td>
<td>required where and to extent the risk assessment shows</td>
<td>required so as to minimise dissemination</td>
<td>required so as to minimise dissemination</td>
<td>required so as to prevent dissemination</td>
</tr>
<tr>
<td>Procedures for transfer of living material between the plant growth facilities, protective structure and laboratory shall control dissemination of GMMs</td>
<td>required so as to minimise dissemination</td>
<td>required so as to minimise dissemination</td>
<td>required so as to prevent dissemination</td>
<td></td>
</tr>
<tr>
<td>Specified disinfection procedures in place</td>
<td>required where and to extent the risk assessment shows it is required</td>
<td>required</td>
<td>required</td>
<td>required</td>
</tr>
<tr>
<td></td>
<td>Waste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactivation of GMMs in effluent from handwashing sinks and showers and similar effluents</td>
<td>not required</td>
<td>not required</td>
<td>required where and to extent the risk assessment shows it is required</td>
<td></td>
</tr>
<tr>
<td>Inactivation of GMMs in contaminated material and waste</td>
<td>required by validated means</td>
<td>required by validated means</td>
<td>required by validated means, with waste inactivated in the laboratory suite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory to contain its own equipment</td>
<td>not required</td>
<td>not required</td>
<td>required, so far as is reasonably practicable</td>
<td></td>
</tr>
<tr>
<td>An observation window or alternative is to be present so that occupants can be seen</td>
<td>required where and to extent the risk assessment shows it is required</td>
<td>required where and to extent the risk assessment shows it is required</td>
<td>required</td>
<td></td>
</tr>
<tr>
<td>Safe storage of GMMs</td>
<td>required where and to extent the risk assessment shows it is required</td>
<td>required</td>
<td>required</td>
<td></td>
</tr>
<tr>
<td>Written records of staff training</td>
<td>not required</td>
<td>required where and to extent the risk assessment shows it is required</td>
<td>required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 4.3.1 Containment measures</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Containment Level 4 is not represented in the table or the associated guidance. No such facility currently exists in the UK and it is not envisaged that any work involving GMMs in association with plants will warrant the use of Containment Level 4. If such work is proposed, or the construction of such a facility is planned then it is strongly advised to discuss the details of containment requirements, management control, design of the facility etc in advance with the competent authority.
Containment Level 1 for GMMs in a plant growth facility

1. Containment Level 1 must be applied for Class 1 activities involving GMMs. All the required measures, in addition to the principles of good microbiological practice and good occupational safety and hygiene (GOSH) (see Part 3, Section 3.1), must be applied unless agreement has been obtained from the competent authority.

**Building**

M1. It is permissible to use a non-permanent structure. Facilities such as basic polytunnels may be appropriate, although the structure should be of suitable design and construction and be appropriately maintained so as to withstand normal climactic conditions over the period of the activity. Where the facility is a glasshouse it shall have a continuous waterproof covering. Permanent structures must have self-closing, lockable outer doors and be located on a site designed to prevent the entry of surface run-off water. It is recognised that most facilities of this type have doors that are not self-closing. Provided doors are not left open when the facility is not in use, users may consider this requirement to be met.

M2. There is no regulatory requirement for a Containment Level 1 facility to be physically separated from other areas of the building. There should be adequate space provided and the working area should be a safe, comfortable environment that takes full account of work practices and equipment present.

M3. A Containment Level 1 facility does not need to be sealable for the purposes of fumigation. However, there may be a requirement for specific disinfection procedures to be in place (see M20).

**Equipment**

M4. There is a regulatory requirement for the bench surfaces to be easily cleaned, be impervious to water and resistant to acids, alkalis, solvents, disinfectants and other decontamination agents that may be in use. It is recognised that the benching commonly used within plant growth facilities may not be impervious to water. Such benching is frequently made of mesh in order to permit the free drainage of water. Where such benching is used, run-off water should be controlled by alternative means, eg using saucers and trays (see M10). Although not required to have a permanent floor, the facility should be easy to clean in order to maintain good hygiene levels. Plastic sheeting, or other flooring material should be used in conjunction with clearly defined walkways to reduce the spread of GM material within the facility.
M5. Not required

M6. Not required

M7. Not required

M8. There is no regulatory requirement for the use of a microbiological safety cabinet or other similar equipment and all work can take place on the open bench. It is acknowledged that containment equipment such as a microbiological safety cabinet might be in use to prevent contamination of the GM work or products being handled.

M9. An autoclave is required to be available on the site, but not necessarily in the same building. However, it is recognised that, in some cases, autoclaving will not be appropriate and alternative waste inactivation procedures should be used. In these cases, derogation must be requested from the competent authority detailing the alternative waste management procedures in place (see M21).

M10. Where the risk assessment identifies that a GMM could be disseminated via the drainage system, control measures must be used to control run-off water. No plants should be planted directly into the ground. All higher plants should be grown in pots, trays or similar containers. All lower plants should be grown in physical containers such as flasks, tanks or fermenters. This could be supplemented with appropriate filters/mesh covers to limit the amount of soil, plant material and water entering the drains. The facility is not required to have a dedicated drainage system and therefore soakaways may be sufficient.

System of work

M11. There is no requirement for access to Containment Level 1 laboratories to be restricted. However, those permitted to work in the laboratory should be competent, trained and properly informed (see M25).

M12. Procedures should be carried out in such a way as to keep aerosol production to a minimum but there is no requirement for specific measures to control aerosol dissemination. Care should be taken to ensure that contact of the GMMs with people and the environment is minimised.

M13. There is no requirement for a showering facility to be present and workers are not required to shower when entering or leaving the facility. However, good hygiene should
be maintained, and hand-washing facilities should be provided. Hands should be washed immediately if contamination with a GMM is suspected, after handling viable GMMs or before leaving the laboratory.

M14. There is a regulatory requirement for suitable protective clothing, such as laboratory coats, to be worn for all activities involving GMMs. Where practicable, these should be left within the facility on exit, particularly where staff are required to go outdoors.

M15. There is no regulatory requirement for protective gloves to be worn. It is acknowledged that gloves might be used to prevent contamination of the GM work or to protect workers against other chemical or biological contaminants.

M16. There is a regulatory requirement for effective control of vectors that could disseminate the GMM material. For a Containment Level 1 facility, there should be effective screening against vermin, such as rodents and birds. For example, a polytunnel is unlikely to offer appropriate protection against invertebrate or fungal vectors. Where the risk assessment shows that these should be controlled, a permanent structure, such as a glasshouse, might be more appropriate.

M17. Where the risk assessment shows that it is required, the dissemination of GMM in plant pollen, seeds and other plant material must be effectively controlled. For example, a polytunnel may not provide a suitable level of assurance that this can be successfully achieved and therefore, a more permanent structure (eg a glasshouse) may be more appropriate. The use a certain degree of biological containment is inherent to all facilities. GMM within the facility will be unable to infect plants in the receiving environment, either because there are no suitable host species or because the environmental conditions are unfavourable. The facility should be dedicated to experimental plants only and the growing of ornamental plants for decorative purposes should not take place.

M18. When transferring GM material between different facilities on site, there is a regulatory requirement that the dissemination of GMM be minimised. Secondary containment, for example the use of double bagging or a box, should provide a suitable means of containment.

M19. It is a regulatory requirement for specified disinfection procedures to be in place where the risk assessment shows that they are required. Effective disinfectants should always be available for immediate use in the event that GMM-contaminated material is spilled (see Part 3, Section 3.5).
Waste

M20. Not required.

M21. There is a regulatory requirement that all GMM contaminated materials and waste must be inactivated by a validated means prior to disposal. In plant growth facilities, this may include growing media, pots and tools, as well as plant material and other incidentally contaminated items. Autoclaving will generally provide the best assurance of inactivation, but it may not be appropriate for all contaminated materials. When autoclaving, the equipment should be operated so as to comply with the manufacturers’ instructions. For example, small amounts of plant material may be inactivated using 121°C for 15 minutes but appropriate times and temperatures may vary. Larger volumes of waste may necessitate a longer holding time or higher temperature. The key requirement is that the system is validated to ensure sufficient steam penetration to the centre of the load for the required time period is achieved. Incineration is an appropriate alternative, although the risk assessment should detail the risk management procedures in operation. Where the incinerator is located off site, there is a regulatory requirement that the incinerator premises be registered as a GM centre. Waste material should be double bagged and placed in a suitable container for transfer to waste management facilities (see M18).

Other measures

M22. There is no requirement to have equipment solely dedicated for use in Containment Level 1 facilities. However, equipment may need to be decontaminated before removal for repair or servicing.

M23. A window or alternative method of observing the laboratory occupants might be required where the risk assessment indicates that it is necessary. It is unlikely that such a system will be required for safety reasons in Containment Level 1 plant growth facilities, although it may offer additional protection or reassurance for lone workers.

M24. There may be a regulatory requirement to have a system for the safe storage for GMMs if the risk assessment indicates that it is needed. Cultures should be stored in appropriate vessels, be clearly labelled and be stored within the facility or nearby (so far as is reasonably practical).

M25. There is no formal requirement for written records of staff training, although the relevant personnel should receive information, instruction and training in the procedures conducted in the laboratory. All accidents and incidents should be recorded.
Containment Level 2 for GMMs in a plant growth facility

2. Containment Level 2 must be applied for Class 2 activities involving GMMs. All the required measures, in addition to the principles of good microbiological practice and GOSH (see Part 3, Section 3.1), must be applied unless agreement has been obtained from the competent authority.

Building

M1. There is a regulatory requirement that the facility is a permanent fixed structure with walls, a roof and a floor. Where the facility is a glasshouse, it shall have a continuous waterproof covering. The facility must have self-closing, lockable outer doors and be located on a site designed to prevent the entry of surface run off water. It is recognised that most facilities of this type have doors that are not self-closing. Provided doors are not left open when the facility is not in use, users may consider this requirement to be met. It is likely that the majority of such facilities will be a standard research glasshouse, although recent technological advances in alternatives to glass may mean other structures are suitable. Facilities should be designed to withstand the local weather conditions and the potential for breakage through other activities, eg vandalism.

M2. There is no regulatory requirement for a Containment Level 2 facility to be physically separated from other areas of the building. There should be adequate space provided and the working area should be a safe, comfortable environment that takes full account of work practices and equipment present.

M3. A Containment Level 2 facility does not need to be sealable for the purposes of fumigation. However, there is a requirement for specific disinfection procedures to be in place (see M20).

Equipment

M4. There is a regulatory requirement for the bench surfaces to be easily cleaned, be impervious to water and resistant to acids, alkalis, solvents, disinfectants and other decontamination agents that may be in use. It is recognised that the benching commonly used within plant growth facilities may not be impervious to water. Such benching is frequently made of mesh in order to permit the free drainage of water. Where such benching is used, run off water should be controlled by alternative means, eg using saucers and trays (see M10). Although not required to have a permanent floor, the facility should be easy to clean in order to maintain good hygiene levels. Where appropriate, measures to reduce the spread of mechanically transmitted GMMs should be
implemented. Plastic sheeting or other flooring material should be used in conjunction with clearly defined walkways to reduce the dissemination of GM material within the facility. Good hygiene should be maintained and hand-washing facilities should be provided to control against the dissemination of GMMs on the hands of staff. These should be located near the exit door and should have taps that can be operated without being touched by hand.

M5. Where the risk assessment shows that entry to the facility should be via a separated room with two interlocking doors, this can be achieved by either having a dedicated entrance lobby/vestibule (for example to a stand-alone glasshouse facility) or by using a shared header house area within a larger facility. Where access is via a lobby/vestibule, at its simplest containment can be achieved by staff being trained not to have the two doors open at the same time. Permanent structures must have lockable outer doors and be located on a site designed to prevent the entry of surface run-off water. It is good practice to lock the facility when unattended to prevent unauthorised access (see M11).

M6. It is a regulatory requirement to maintain the facility at a negative pressure with respect to the surrounding areas if the risk assessment shows that is necessary. This is likely to be the case if the GMM can be passively transmitted via the air but is unlikely to be required for mechanically transmitted or vectored organisms. Where negative pressure is employed, a system to monitor the status of the pressure differential (e.g., Magnehelic gauges) should be installed so that any associated failure in containment can be detected.

M7. Not required

M8. It is a regulatory requirement to use a microbiological safety cabinet (or similar containment equipment) where the risk assessment shows that it is required. For example, if the GMM can be disseminated in the air, then procedures that might generate aerosols (e.g., vigorous shaking or sonication) should take place within a microbiological safety cabinet or similar containment equipment. Where such equipment is used, and where there is a risk of harm from not doing so, it is a legal requirement to HEPA filter extract air, whether it is exhausted to outside air or recirculated. Procedures should be in place to limit the production and dissemination of aerosols and such equipment can be employed for this purpose (see M12).

M9. An autoclave is required to be available and located within the same building as the plant growth facility. Where the containment facility is accessed via a header house area, it is expected that the autoclave will be positioned here. Where the autoclave is not in the same building as the plant growth facility, or alternative waste inactivation procedures are
used, derogation will need to be applied for detailing the alternative arrangements in place (see M21).

M10. Control measures must be taken to minimise the dissemination of GMM material via run-off water (ie the drainage route). It is recognised that the benching used may not be impervious to water and saucers or trays should be used, supplemented with appropriate hygiene measures to limit the amount of soil, plant material and water entering the drains. For example, hand watering systems are likely to be in place as opposed to automatic systems and appropriate filters/mesh covers could be fitted to the floor drains.

**System of work**

M11. There is a regulatory requirement that access to the facility is restricted to authorised personnel. This is most easily achieved via outer doors that are locked at all times or by using digital keypad or electronic swipe-card entry systems. Those permitted to work in the laboratory should be competent, trained and properly informed (see M25). Entry into the contained area for maintenance purposes can be minimised by locating control panels and engineering access points outside the restricted parts of the facility.

M12. When handling GMMs, there is a regulatory requirement to control aerosols such that airborne dissemination is minimised. It is recognised that activities resulting in aerosol generation are likely to be limited within a plant growth facility, but nevertheless the risk assessment should determine what measures are appropriate. For example, the use of containment equipment, such as a microbiological safety cabinet or, for centrifugation, sealed rotors or buckets.

M13. There is no requirement for a showering facility to be present and workers are not required to shower when entering or leaving the facility. However, good hygiene should be maintained and hands should be washed immediately if contamination with a GMM is suspected, after handling viable GMMs or before leaving the laboratory.

M14. There is a regulatory requirement that suitable protective clothing, such as laboratory coats, be worn for all activities involving GMMs. This is particularly important for mechanically transmitted GM plant pathogens in order to prevent human-mediated release from (or dissemination of the organism within) the facility. Where practicable, protective workwear should be removed upon exiting the facility and prior to washing hands and left within the facility, particularly where staff are required to go outdoors.
M15. Gloves are required to be worn where indicated by the risk assessment. This will be particularly important for mechanically transmitted GM plant pathogens in order to prevent human-mediated release from (or dissemination of the organism within) the facility.

M16. There is a regulatory requirement to control potential disease vectors that could disseminate the GM plant pathogens from the facility. This should include invertebrates. Vents should have a mesh screen appropriate to the invertebrate species to be excluded. Caulking materials should be used to seal any gaps, such as those between glass panes and service pipes, and brushes or pneumatic strips should be fitted around the edges of doors. In addition, an efficient control regime should be used involving monitoring traps (such as sticky traps) and where necessary, appropriate chemical control. Where biological control agents are to be introduced into the facility, the risk assessment should consider the possibility of these agents themselves disseminating the GMM. If the risk assessment has identified soil-borne organisms (such as nematodes and fungi) as vectors for the GMM, the control of these should be achieved using similar measures to those described for run-off water and soil (see M10).

M17. The dissemination of GMMs in plant pollen, seeds and other plant material must be minimised. Further guidance on seed and pollen control measures can be found in Section 4.5 P15-21. In addition, the dissemination of GMM in other plant material (including plant sap) should be minimised and suitable measures employed to prevent the spread of mechanically transmitted GM pathogens. Gloves should be worn at all times when handling the GMM and potentially infected plants, and should be removed before leaving the compartment (see M15). Appropriate protective clothing should be worn which is removed on exiting the main facility (see M14). Care should be taken when watering plants with lances or cans. Since Class 2 GMMs have been identified as being able to infect species in the environment, the growth of plants in the immediate vicinity of the facility should be restricted in order to control against potential GMM hosts and compatible relatives of the GM plants. This can be reasonably achieved by employing a paving or gravel barrier around the facility, in conjunction with herbicide treatment regimes. There should be different compartments within the facility for GM and non-GM work. Where the sharing of compartments between different activities is unavoidable, the risk assessment should clearly outline the likelihood of contamination, taking into account susceptibility of plants to infection with the GMM and sexual compatibility.

M18. When transferring GM material between different facilities on site, there is a regulatory requirement that the dissemination of GMM be minimised. Secondary containment (eg a bag or box) should be used in conjunction with a transfer container, such as a wheelie bin. Where the risk assessment has identified that the dissemination of
the GMM needs to be prevented during transfer, a more robust secondary container that should contain the GMM in the event of an accident should be used.

M19. There is a regulatory requirement that specific disinfection procedures are in place within the facility for use against GMMs. Effective disinfectants should be available for routine disinfection and for immediate use in the event of a spillage. The disinfectants selected should be validated and local rules should be in place governing their use (see Part 3, Section 3.5).

Waste

M20. Not required

M21. There is a regulatory requirement that all GMM contaminated materials and waste must be inactivated by a validated means prior to disposal. In plant growth facilities, this may include growing media, pots and tools, as well as plant material and other incidentally contaminated items. Autoclaving will generally provide the best assurance of inactivation, but it may not be appropriate for all contaminated materials. When autoclaving, the equipment should be operated so as to comply with the manufacturers’ instructions. For example, small amounts of plant material may be inactivated using 121°C for 15 minutes but appropriate times and temperatures may vary. Larger volumes of waste may necessitate a longer holding time or higher temperature. The key requirement is that the system is validated to ensure sufficient steam penetration to the centre of the load for the required time period is achieved. Incineration is an appropriate alternative, although derogation and details of the risk management procedures will be required. Where the incinerator is located off site, there is a regulatory requirement that the incinerator premises be registered as a GM centre. Since Class 2 GMMs have been identified as being able to infect plants in the environment, the containers used for transporting to the incinerator should be sufficiently robust (see M18). Where small amounts are involved validated containment vessels (eg incinerator bins) may be sufficient. One-way burn bins may also be appropriate, but for larger volumes burn bags contained within wheelie bins are acceptable. Local rules should be used to clearly outline the expected fate of all material within the facility and GM and non-GM material may have to be subject to the same waste inactivation measures unless fully justified in the risk assessment.
Other measures

M22. There is no requirement to have equipment solely dedicated for use in Containment Level 2 facilities. However, equipment may need to be thoroughly decontaminated before removal, repair or servicing.

M23. A window or alternative method of observing the laboratory occupants might be required where the risk assessment indicates that it is necessary. It is unlikely that such a system will be required for safety reasons in Containment Level 2 plant growth facilities, although it may offer additional protection for lone workers.

M24. There is a regulatory requirement for safe storage of GMM, which may include plant material that is either infected or contaminated. Appropriate vessels should be used which are labelled and stored in an appropriate facility, such as a locked freezer. Where numerous different GMMs are constructed, consideration should be given to a management system of recording all the lines stored and cross-referencing them to the relevant risk assessment.

M25. Formal written records of staff training are required if the risk assessment indicates that it is necessary. Laboratory personnel should receive information, instruction and training in handling of GMMs. This will also satisfy the requirement for training and standards under the Control of Substances Hazardous to Health Regulations 2002 (COSHH) and the Management of Health and Safety at Work Regulations 1999 (see Part 1 of the Compendium). All accidents and incidents should be recorded and reported internally. If human health or the environment could have been harmed then this must be reported to HSE, in addition to any reports required under RIDDOR. Further guidance on this can be found in the publication A guide to the Genetically Modified Organisms (Contained Use) Regulations 2000 and in Part 1 of the Compendium.
Containment Level 3 for GMMs in a plant growth facility

3. Containment Level 3 must be applied for Class 3 activities involving GMMs. All the required measures, in addition to the principles of good microbiological practice and GOSH (see Part 3, Section 3.1), must be applied unless agreement has been obtained from the competent authority.

Building

M1. There is a regulatory requirement that the facility is a permanent fixed structure with walls, a roof and a floor. It is likely that a Containment Level 3 plant growth facility will comprise either a highly engineered glasshouse or, more likely, growth rooms or cabinets within a controlled environment suite. Where a glasshouse or similar structure is used, an increased level of containment is expected when compared to an equivalent Containment Level 2 facility. For example, all joints, overlapping panes etc should be effectively caulked and, at the highest level, break-resistant glazing/polycarbonate sheeting should be used. The facility must have self-closing, lockable outer doors and be located on a site designed to prevent the entry of surface run-off water.

M2. There is a regulatory requirement for Containment Level 3 facilities to be isolated. Where the plant growth facility is a controlled environment suite within a secondary building, restricting access and ensuring that communal corridors etc do not compromise separation can achieve this. Similarly, in a larger glasshouse facility, a small section or wing may be dedicated to Level 3 containment and as such, access can be restricted in order to maintain isolation. There should be adequate space provided and the working area should be a safe, comfortable environment that takes full account of work practices and equipment present.

M3. There is a regulatory requirement for Containment Level 3 facilities to be sealable for fumigation. This is so that they can be appropriately decontaminated in the event of a significant accidental release or where the local rules require fumigation to be undertaken. Sealability also protects humans outside the facility from the potentially toxic effects of the fumigant. It is recognised, however, that fumigation against plant pathogens is not routine within plant growth facilities and may not even be possible in a glasshouse. Where the facility is not sealable and fumigation is not to be used, derogation will be required along with detailing alternative means of decontamination. For example, washing the facility down with a validated chemical disinfectant may be appropriate. Specific disinfection procedures are required to be in place (see M20). Further information on fumigation and sealability for GMM control can be found in Part 3, Section 3.6.
Equipment

M4. There is a regulatory requirement for bench and floor surfaces to be easily cleaned, be impervious to water and resistant to acids, alkalis, solvents, disinfectants and other decontamination agents that may be in use. It is recognised that the benching commonly used within plant growth facilities may not be impervious to water. Such benching is frequently made of mesh in order to permit the free drainage of water. Where such benching is used, run-off water should be controlled by alternative means, eg using saucers and trays (see M10). Where appropriate, measures to reduce the spread of mechanically transmitted GMMs should be implemented. Plastic sheeting, or other flooring material should be used in conjunction with clearly defined walkways to reduce the dissemination of GM material within the facility. Good hygiene should be maintained and hand-washing facilities should be provided to control against the dissemination of GMMs on the hands of staff. These should be located near the exit door and should have taps that can be operated without being touched by hand.

M5. Entry to the facility should be via a separate room with two interlocking doors, where the risk assessment shows that this is necessary. It is expected that a Containment Level 3 plant growth facility handling moderately hazardous GMM in association with plants will be entered via a lobby/vestibule with self-closing doors. Entry via an airlock with a separate chamber with showering and changing facilities is not required. Consideration should be given to a system (eg audio/visual alarm or electronic interlock) that ensures that the two doors are not open at the same time. Within the lobby area, there should be space to store laboratory coats dedicated to the facility and hand-washing facilities should be provided with taps that can be operated without being touched by hand.

M6. There is a regulatory requirement that Containment Level 3 facilities are maintained at a negative pressure relative to the immediate surroundings. This is to control the movement of airborne GMMs, particularly those disseminated as the result of a spillage or an aerosol release. This should be achieved by appropriate air handling systems in conjunction with appropriate seals. A system to monitor the status of the pressure differential (eg Magnehelic gauges) should be installed so that any associated failure in containment can be detected. While negative pressure is a requirement of the regulations, it is recognised that this may not always be possible or appropriate within a plant growth facility. For example, positive pressure may be required to prevent ingress of an intermediate vector species. Where this is the case, or where a negative pressure gradient is not appropriate, derogation can be requested. Alternative measures in place to afford an appropriate level of containment should be fully detailed in the risk assessment.
M7. There is a regulatory requirement that air extracted from a Containment Level 3 facility be HEPA filtered. This is to prevent release of an airborne GMM, particularly that disseminated as the result of a spillage or an aerosol release. It is recognised that HEPA filters may not be appropriate for use in glasshouse facilities where large volumes of air need to be exchanged. Where this is the case, and where HEPA filters are not used, this should be fully detailed in the risk assessment and a derogation should be requested outlining the alternative measures in place to afford an appropriate level of containment. For example, alternative air filters can be used to prevent a GMM being disseminated via pollen, a filter of the G4 standard is likely to be appropriate. This is because these filters are rated as being over 90% efficient at arresting larger airborne particles, including the majority of plant pollens. In addition, they tend to comprise pleated panels that are more likely to prevent the movement of insects. Where the risk assessment identifies that HEPA filters offer the most effective measures for containing the GMM material, for example airborne spores derived from GM fungi, in the majority of cases it is likely that such work will be restricted to a controlled environment facility.

M8. It is a regulatory requirement that a microbiological safety cabinet (MSC) be present in a Containment Level 3 facility and that all procedures involving infective GMMs be undertaken within it. While an MSC should be used for handling stock cultures of the GMM and for the infection of small volumes of plant material (such as detached leaf material in petri dishes), it is recognised that they may be inappropriate for other activities within a plant growth facility. Where an MSC is not in place or used, derogation must be requested detailing the alternative measures in place to afford an appropriate level of containment. Procedures should be in place to prevent the production and dissemination of aerosols and such equipment can be employed for this purpose (see M12).

M9. An autoclave is required to be available and located within the Containment Level 3 plant growth facility. Where the autoclave is outside the connected suite, or alternative waste inactivation procedures are used, derogation should be requested outlining the alternative transfer and risk management procedures in place. Validated procedures for the safe transfer and inactivation of material will be required that provide an equivalent level of protection to having an autoclave positioned in accordance with the regulations (see M18; M21).

M10. There is a regulatory requirement to control run-off water within a Containment Level 3 facility so as to prevent the dissemination of GMM material. In addition to placing all pots on impervious trays or lining all benches with impervious plastic sheeting, the floor of the facility should be impervious to water (see M4). Where practicable, the facility should have no drainage or the drains should be blocked throughout the course of the activity with an appropriate system in place to collect and treat any large volumes of
water. Where the facility remains connected to the drains throughout the course of the activity, it should be connected to an appropriate ‘kill tank’ for the validated inactivation of any potential GMM material that may enter the system.

System of work

M11. There is a regulatory requirement that access to the facility is restricted to authorised personnel. This is most easily achieved via outer doors that are locked at all times or by using digital keypad or electronic swipe-card entry systems. In addition, access should also be restricted to individual compartments, cabinets etc within the facility. Those permitted to work in the laboratory should be competent, trained and properly informed (see M25). Entry into the contained area for maintenance purposes can be minimised by locating control panels and engineering access points outside the restricted parts of the facility.

M12. There is a regulatory requirement to adopt specific measures so as to prevent aerosol dissemination of GMMs within a Containment Level 3 facility. It is recognised that activities resulting in aerosol generation are likely to be limited within a plant growth facility, but nevertheless the risk assessment should determine what measures are appropriate. It is expected that the measures in place will be of a higher standard than at Level 2 and may involve some of the measures previously outlined, such as the use of a microbiological safety cabinet or, for centrifugation, sealed rotors or buckets.

M13. Where the risk assessment indicates that it is required, personnel must shower before leaving the facility. Good hygiene should be maintained at all times and hands should be washed immediately if contamination with a GMM is suspected, after handling viable GMMs or upon exit.

M14. There is a regulatory requirement that suitable protective clothing, such as laboratory coats, be worn for all activities involving GMMs. This is particularly important for mechanically transmitted GM plant pathogens in order to prevent human-mediated release from (or dissemination of the organism within) the facility. Protective workwear should be dedicated to the Containment Level 3 facility, be removed prior to washing hands and left in the lobby area on exit. The use of differently coloured lab coats may help in the management of this. Protective clothing should be decontaminated prior to laundering, usually via autoclaving.

M15. Gloves are required to be worn at Containment Level 3. This is particularly important for mechanically transmitted GM plant pathogens in order to prevent human-mediated release from (or dissemination of the organism within) the facility. They are particularly
important for controlling the dissemination of mechanically transmitted GM plant pathogens.

M16. There is a regulatory requirement to control potential disease vectors that could disseminate the GM plant pathogens from the facility. This should include invertebrates. Caulking materials should be used to seal any gaps, such as those between glass panes and service pipes, and brushes or pneumatic strips should be fitted around the edges of doors. In addition an efficient control regime should be used involving monitoring traps (such as sticky traps) and where necessary, appropriate chemical control. It is expected that a Containment Level 3 glasshouse would not have openable vents, with temperature regimes instead being maintained by air conditioning or air-handling arrangements. Soil-borne vectors should be controlled using the arrangements described above to prevent dissemination by run-off water (see M10). It is likely that Containment Level 3 facilities will be the only ones in which the deliberate, experimental transmission of GMM material using invertebrate vectors are permitted. However, the use of a specialist insectary facility containing growth cabinets in which plants can be grown is encouraged. Within such a facility temperature and light gradients can be used to provide additional barriers to control the movement of invertebrates. The experiments should involve the minimum number of plants, should be short term and ideally should be undertaken when the environmental conditions outside of the facility are less likely to permit the survival of the vector.

M17. Where the risk assessment shows that it is required, the dissemination of GMMs in plant pollen and seeds must be prevented. For further guidance on seed and pollen control measures can be found in Section 4.5 P15-21. As well as pollen and seeds, there remains the regulatory requirement to prevent the dissemination of GMMs in other plant material (including plant sap). This should be minimised and suitable measures employed to prevent spread of mechanically transmitted GM pathogens. The most appropriate measures for controlling such dissemination are based on ensuring good levels of hygiene. Gloves must be worn at all times when handling infectious GMMs or infected plants (see M15). Contamination of work surfaces and door handles etc should be controlled with chemical disinfection regimes (see M19). Appropriate protective clothing must be worn (see M14) and dedicated protective footwear, sticky floor mats or a footbath containing an appropriate validated chemical disinfectant could be used to control the dissemination of the GMM on the feet of staff. Where GMMs have been identified as being able to infect species in the environment, the growth of plants in the immediate vicinity of the facility should be restricted in order to control against potential GMM hosts and compatible relatives of the GM plants. This can be reasonably achieved by employing a paving or gravel barrier around the facility, in conjunction with herbicide treatment regimes. There should be different compartments within the facility for GM and non-GM
work. Where the sharing of compartments between different activities is unavoidable, the risk assessment should clearly outline the likelihood of contamination, taking into account susceptibility of plants to infection with the GMM and sexual compatibility.

M18. When transferring GM material between different facilities on site, there is a regulatory requirement that dissemination of the GMM be prevented. Secondary containment (e.g., a bag or box) should be used in conjunction with a robust, leak-proof secondary container that should contain the GMM in the event of an accident.

M19. There is a regulatory requirement that specific disinfection procedures are in place within the facility for use against GMMs. Effective disinfectants should be available for routine disinfection and for immediate use in the event of a spillage. Whatever disinfectant is selected, it should be validated and local rules should be in place governing their use (see Part 3, Section 3.5).

Waste

M20. Inactivation of GMMs in effluents from washbasins and showers might be required in Containment Level 3 facilities, where the risk assessment shows that this is necessary. Where this is required, effluents should be collected in a sump and inactivated, or pass through a ‘kill tank’.

M21. There is a regulatory requirement that all GMM-contaminated materials and waste must be inactivated by a validated means prior to disposal. In plant growth facilities, this may include growing media, pots and tools, as well as plant material and other incidentally contaminated items. Autoclaving will generally provide the best assurance of inactivation, but it may not be appropriate for all contaminated materials. When autoclaving, the equipment should be operated so as to comply with the manufacturers’ instructions. For example, small amounts of plant material may be inactivated using 121°C for 15 minutes but appropriate times and temperatures may vary. Larger volumes of waste may necessitate a longer holding time or higher temperature. The key requirement is that the system is validated to ensure sufficient steam penetration to the centre of the load for the required time period is achieved. Incineration might be an appropriate alternative, although derogation and details of the risk management procedures will be required. Where the incinerator is located off site, there is a regulatory requirement that the incinerator premises be registered as a GM centre. Given the hazardous nature of the material, the containers used for transporting to the incinerator should be sufficiently robust (see M18). One-way burn bins should be sufficient. Local rules should be used to clearly outline the expected fate of all material within the facility.
and GM and non-GM material may have to be subject to the same waste inactivation measures unless fully justified in the risk assessment.

Other measures

M22. There is a regulatory requirement that, so far as is reasonably practicable, Containment Level 3 facilities should contain all its own equipment. This is to reduce the movement of experimental materials between different facilities and thereby reduce the likelihood of GMM dissemination. Equipment should be thoroughly decontaminated before removal, repair or servicing.

M23. A window or alternative method of observing the laboratory occupants is required. This is in order to be able to view any operatives working in the facility as a safety measure. Where this is not in place, derogation must be requested detailing the alternative measures in place to afford an equivalent level of safety.

M24. There is a regulatory requirement to have a system for the safe storage for GMMs at Containment Level 3. Cultures should be stored in appropriate vessels, be clearly labelled and be, so far as is reasonably practical, stored within the laboratory or laboratory suite. Ideally, viable materials requiring Level 3 containment should only be stored and handled within the Containment Level 3 laboratory itself. Fridges and freezers used for storage outside of the laboratory should be kept locked.

M25. Formal written records of staff training are required. Laboratory personnel should receive information, instruction and training in handling of GMMs. Other staff who may need to access the contained areas should also receive an appropriate degree of training, particularly if they need to enter the facility while work is in progress. This will also satisfy the requirement for training and standards under COSHH and the Management Regulations (See Part 1 of the Compendium). All accidents and incidents should be recorded and immediately reported internally. If human health or the environment could have been harmed then this must be reported to HSE, in addition to any reports required under RIDDOR. Further guidance on this can be found in the publication A guide to the Genetically Modified Organisms (Contained Use) Regulations 2000 and in Part 1 of the Compendium.
4.4 Risk assessment of work with genetically modified plants

Overview

1. The following guidance concerns the risk assessment of activities involving genetically modified, including transgenic, plants. For the majority of activities, the primary considerations of the risk assessment will be given to the effects the GM plant may have on the environment in the event of an escape. This is likely to be the case for GM activities relating to the study of plant genetics or the development of varieties of plants with altered growth and survival characteristics, as the potential ramifications for human health will be negligible. However, human health implications will require greater emphasis where activities involve the expression in plants of biologically active products, or products that may be toxic or allergenic. Therefore, while the potential environmental impact of any GM plant will require careful assessment and control, it is important not to overlook the possible effects on workers who may be exposed.

2. The Environmental Protection Act and the Contained Use Regulations require that risk assessments for both environmental and human health protection be carried out respectively. Each part of the risk assessment will involve the following steps:

   • hazard identification;
   • assessment of likelihood of hazards being realised;
   • assessment of the consequences of hazards being realised;
   • determination of risk that hazards will be realised;
   • assignment of containment level or control measures to reduce the risks to ‘effectively zero’.

3. The risk assessment process should also include a consideration of the nature of the work and a review of the procedures, with additional control measures implemented, if necessary. From this, the minimum containment requirements will be evident and any notification requirements can be determined.

Risk assessment for the environment

4. For work with GM plants, only the risks posed to human health are covered by the Contained Use Regulations. However, the potential for damage to the environment must be assessed under the requirements of the Environmental Protection Act and the Genetically Modified Organisms (Risk Assessment) (Records and Exemptions)
Regulations 1996. The objective of the risk assessment is to determine the likelihood and the possible consequences of an accidental release of a GMO from containment into the environment. In a properly maintained and managed facility with the correct containment measures in place, the likelihood of such a release will be low. However, it is important to identify all possible hazards and consider any routes by which the GMO could be released (including waste disposal, equipment failure and spread by humans).

5. Clearly, the concern is for GM plants that could feasibly cause harm to the environment. This includes adverse effects upon any environmental ecosystem, including indigenous plants, crops and microbial populations, as well as harm to animal populations and the wider public. The risk assessment should consider both the receiving environment surrounding the containment facility as well as the wider environment, especially if there is a possibility that the GMO could survive and disseminate.

**Mechanisms by which the GMO might pose a hazard to the environment**

6. During the hazard identification process, the factors to consider will include:

- the capacity of the GM plant to survive, become established and disseminate. This includes its ability to compete with or displace other plants;
- hazards associated with the inserted gene/element. This will be particularly relevant if the insert encodes a toxic product and could have adverse effects on animals, plant and soil ecology;
- potential for transfer of genetic material between the GM plant and other organisms;
- phenotypic and genetic stability, especially if the modification is being used for biological containment.

7. Therefore, consideration should be given to whether any of the above factors represent hazards associated with the GMO when taking into account the characteristics of the recipient organism, the insert and the final GMO. The assessment should evaluate whether or not the gene could be passed on to another organism (for example a microorganism or sexually compatible plant species) and the potential consequences of this. Synergistic and cumulative effects should also be considered.

**Capacity to survive, establish and disseminate**

8. The ability of a GM plant to survive will be a key attribute and will affect whether or not other potential risk factors will come into play. Survival should be interpreted in its broadest sense to include the ability to go through a full life cycle and pass on its genes. Some organisms will not be capable of survival in the wider environment and in these
cases the GMO can normally be considered safe. However, others will show varying degrees of ability to survive. This might range from being fully adapted to the conditions present in the receiving environment and able to complete a full life cycle, to having limited survivability, for example being unable to breed or overwinter in the UK.

9. For GMOs that are able to survive to any extent in the receiving environment, it is important to assess their ability to become established. This will include considerations as to the ability of the modified plant to colonise, grow and compete with native species that might be present. For instance, where the recipient organism is invasive, then the GMO may exhibit similar characteristics.

10. The GMO may also have characteristics that will enable it to compete with other plant species. For example, it may have superior symbioses with soil-borne microorganisms or have inherent allelopathic mechanisms that will enable the plant to grow more easily in the presence of native plants. Furthermore, the introduction of genes that may give the plant a competitive advantage should also be considered. This may enable the modified organism to occupy a wider niche than the unmodified plant, for instance as a result of increased environmental tolerances or resistance to herbicides or insect pests.

11. The ability of the modified plant to form survival structures, such as seeds, should also be considered. Particular attention should be paid to the distance that these might be disseminated and whether or not there has been a change in the seed dispersal or dormancy mechanisms compared to the unmodified plant.

12. For GMOs that can survive, even to a limited extent, as a consequence it is important other possible hazards should be considered. For example, a GM plant with a very limited capacity to survive may be able to persist in the environment long enough to cause harm, for example by transferring the inserted gene to other organisms in which it may be expressed. It should be noted that, even if the risk assessment indicates that the GM plant is unlikely to cause harm in the receiving environment, it is illegal for a GM plant to be intentionally grown in the environment unless consent is obtained under the Deliberate Release Regulations.

**Hazards associated with the inserted gene/element**

13. A GMO that has the potential to cause adverse effects on other organisms due to the expression of an inserted gene will pose a hazard, even if such effects are part of the intended purpose of the genetic modification. It is therefore important that potential for adverse effects caused by the products of a heterologous gene insert upon plant, animal and microbial species present in the receiving environment are carefully considered.
14. **Ability to cause harm to plants.** Products secreted into the soil by the roots of a GM plant might affect growth and survival of native species. If a toxic product is expressed, or a secretion mechanism is bestowed upon a GM plant, then the ability of the gene product to cause harm to those plant species present should be considered.

15. **Ability to cause harm to animals.** This should include a consideration of toxicity and allergenicity. For example, a modified plant being used to manufacture biologically active products may be allergenic, immunogenic or toxic to exposed animal populations. In particular, the expression of a gene encoding a toxic product in an animal food plant, or if the gene could be transferred to such a plant, then that gene product might kill or reduce populations of fauna.

16. **Ability to cause harm to populations of beneficial microorganisms.** It is important to consider any potentially harmful (or beneficial) effects that a plant could have on microorganisms in the soil or watercourses. A plant expressing a novel anti-fungal compound could kill soil fungi or mycorrhizas if it escaped and became established. Similarly a plant secreting high levels of antibiotics could harm beneficial soil bacteria.

17. **Transencapsidation.** If the transgene encodes a viral coat protein, the possibility of transencapsidation of an infecting virus should be assessed. This could result in the formation of virus particles comprising of the genomic nucleic acid of one virus and the coat protein of another. In these cases the resulting novel virus may have altered transmissibility, specificity and stability.

18. **Recombination.** RNA messages derived from a transgene could recombine with the RNA genome of an infecting virus. This may occur through ‘copy-choice template switching’ and result in the incorporation of some or all of the transgene sequences into the genome of the infecting virus, creating a recombinant with novel characteristics. It is likely that such recombination events may have occurred in the evolution of some plant viruses. There is no hard evidence that recombination occurs at higher levels in transgenic plants than would be the case in mixed viral infections. However, the fact that the transgene might be expressed in every cell may increase the likelihood of such an event occurring.

19. **Satellite systems.** Satellites are nucleic acid molecules that are dependent upon co-infection with a ‘helper virus’ for replication. Where viral satellite systems are used to generate a transformed plant, hazards may arise as a result of interactions with infecting plant viruses that possess helper functions. For instance, a satellite that is mild in one host may be virulent in another. Furthermore, the sequence difference between a mild
and a virulent satellite can be small – a single point mutation can convert a non-necrotic satellite to a necrotic one in tomato. Therefore, consideration should be given to the possibility that a mild satellite derived from a cDNA insert could be virulent in another species or mutate to virulence during virus-assisted replication.

20. **Synergistic effects.** There may be synergistic effects between the insert and infecting viruses. For example, in cucumbers, replication of the tomato aspermy virus (TAV) is restricted to leaves unless the plant is also infected with cucumber mosaic virus (CMV), or where there is expression of the CMV coat protein. Possible synergistic effects between the inserted gene and infecting plant pests therefore need to be considered in risk assessments. The risks may be increased when non-native viruses and/or non-host plants are involved, allowing potential interactions with secondary-infecting viruses and invertebrate vectors that would not normally occur.

21. It is important to consider the properties inherent to the products of a heterologous gene insert in conjunction with the expected characteristics of expression. For instance, the gene product might be allergenic or toxic to humans and animals. If the gene is expressed in the leaves or edible parts of a plant, then an adverse effect due to contact with or ingestion by animals might be possible. Should the expression of that product be restricted to root tissue, then the potential risks posed to grazing animals might be reduced. However, toxic products secreted by the roots might have adverse effects on soil microbial populations, symbiotic organisms and plant health. The non-coding regulatory regions and signal sequences present in the insert will affect the characteristics of expression. It is important that the effects of these are considered in addition to the biological activity of the expressed product.

22. Stable integration of inserts into plant genomic DNA during the stable transformation of plants is usually random. The level to which the gene is expressed is dependent upon the site into which the gene is integrated. Therefore, expression level may vary between plants that have been modified using the same insert and may also vary in different areas of the same plant (depending on the method used to transform the plant). Furthermore, plant gene silencing mechanisms may reduce the level of expression. It is therefore important to consider whether the levels of gene product generated might affect the magnitude of the hazards associated with it.

**Transfer of harmful sequences between organisms**

23. It is important to identify any hazards associated with altered or inserted sequences being transferred to plants that may be present in the receiving environment. For example, if a plant was modified to express a toxin gene in the roots, then transfer of this gene to
environmental species or crops may have a deleterious effect on beneficial soil-borne microorganisms and insects. There are many mechanisms by which sequences may be transferred between organisms and consideration should be given as to whether these are relevant.

24. For flowering GM plants, genetic material could be spread via the dispersal of pollen. Careful consideration should be given to the possibility that genes from a GM plant in containment could be inadvertently transferred to sexually compatible plants present in the receiving environment. However, where there are no sexually compatible species present, pollen dispersal is unlikely to be a significant hazard.

25. It is particularly important to carefully assess the transfer of genes that are novel and not normally found in plants. Examples of such genes would include those encoding biologically active, pharmaceutical or industrial products. The inadvertent transfer of such genes to edible species might pose a particular risk. Another example would be genes encoding potentially immunogenic or allergenic products, such as antigens from human or animal pathogens expressed as part of a vaccine development programme. It is probably that GM plants carrying such novel genes will require stringent containment.

**Phenotypic and genetic stability**

26. The stability of a given genetic modification should also be considered, particularly if its purpose was for the biological containment of the GMO and growth characteristics might revert to wild type. A reversion event of this type might result in a plant with enhanced survival characteristics, or give the GM plant a selective advantage. Therefore, the genetic stability of a modification may be inextricably linked to phenotypic stability where it restricts the GMO’s ability to survive and to spread.

27. The loss of an inserted gene is unlikely to constitute a hazard, but an organism with a restricted capacity to survive will be under stress in the environment and there will be a strong selection pressure in favour of reversion. The possibility that a GMO will be genetically unstable outside of the conditions in which it was intended to exist should be taken into account and consideration given to any detrimental effects this might cause.

**Likelihood that the GMO will be a risk to the environment**

28. The initial stages in the risk assessment process so far involve identifying those features of the GM plant that have the potential to cause harm and the mechanisms by which these hazards could be realised. While it may be possible to draw up theoretical
scenarios whereby the GMO may be hazardous to the environment, the chances of them being realised should be evaluated and understood.

29. Estimating the likelihood of a harmful consequence being realised will be difficult where there is no firm data on which to base a judgement. In general, the weight given to information used in these considerations should reflect the quality of the supporting data.

Assessment of likelihood

30. It is often possible to assign a frequency to a given event. Often, this can take the form of a numerical frequency obtained in-house or through published data. However, in many cases this will not be possible and an approximate, semi-quantitative or descriptive assessment of the frequency, based upon experience and scientific knowledge, may be possible. In these cases, a cautious approach is advised and it should not be assumed that failure to observe an event is evidence that it does not occur. For the purposes of using the risk determination matrix explained in Table 4.2.1, likelihood can be expressed as ‘high’, ‘medium’, ‘low’ or ‘negligible’.

31. A key factor in whether or not the hazard will be realised is the environment into which the GMO would be released. It is therefore important to consider the nature of the organism in relation to the receiving environment. Even if the GMO could conceivably survive and disseminate in the environment, it may be that the environment itself would not be able to support it.

32. Therefore, there may be characteristics of the receiving environment that will contribute to the likelihood of the hazard being manifested. These may be climatic, geographical or soil conditions that might affect the ability of the organism to grow and reproduce. In addition, the local agricultural conditions and indigenous organisms should be considered. This might include the presence of sexually compatible species or intermediate vectors.

33. For example, a tropical plant might not survive in temperate regions characteristic of the UK but presence of cultivars of the same crop or wild relatives in the vicinity of the containment facility may be important when considering the likelihood of gene transfer.

34. The means by which the GMO might become disseminated in the event of a release should also be considered. For instance, the distribution mechanisms of seeds or pollen may be a factor. Where pollen dispersal under normal conditions would be mediated entirely by wind, the likely dispersal distances from the facility may be low. If insect vectors are the main route of dispersal, pollination ranges should be considered and
efforts taken to prevent ingress of vectors. For self-propagating aquatic species, the likely means of dispersal might be via drainage or waste water systems.

35. When estimating the probability and frequency of events, consideration should also be given to the number of organisms that might be involved in the incident. This will depend on the nature of the experiment and the organism being assessed. However, the probability that a hazard will be realised will often depend on the number of viable units that could escape as well as the ability of the GMO to survive.

36. A transfer event between a transcript derived from an inserted sequence and a microbe that gives rise to a novel recombinant should be considered. This is most likely to occur between a GM plant and an infecting plant virus. Recombination between a transcript and an infecting virus has been seen but in most cases there was some selective pressure applied and the infecting virus was closely related to a virus from which the insert was derived. Retrotransfer to bacteria such as Agrobacterium is theoretically possible because there is evidence that this may have occurred during evolution. This suggests, however, that the likelihood of such an event may be low, unless a selective advantage is conferred upon on the recombinant. However, it should be noted that it is not always easy to assess the circumstances in which a selective advantage will arise given that the properties of a recombinant will be difficult to predict.

37. Where plants contain a transgene expressing a viral coat protein, the likelihood of transencapsidation should also be considered. It is well documented that plants can be infected with two or more viruses and transencapsidation is possible, albeit between closely related viruses.

38. Where facilities are located in towns or cities away from rural areas, the likelihood of such events occurring may be less than in a rural setting where plant viruses may be more prevalent.

39. Transencapsidation may be more likely to occur in stable transgenic plants than transiently transformed equivalents, because all cells within a transgenic plant will carry the insert, making every infection an opportunity for transencapsidation. Furthermore, if promoter that is active in a broad range of cell types is used (eg CaMV 35S), the insert may be expressed in cells not normally infected by the virus from which it is derived. For example, the coat protein of a virus that normally infects phloem cells (such as luteovirus) may be expressed in mesophyll cells. This might allow a transencapsidation event with a related virus that normally infects the mesophyll cells.
40. The sequence of the inserted gene could be manipulated to reduce the likelihood of a transencapsidation event. For instance, a mutated coat protein construct that produces a protein incapable of being assembled into virus particles could be used. For example, mutation of the TMV coat protein at residue 28 has been shown to prevent virus particle assembly, while maintaining its inherent ability to protect tobacco against wild-type TMV infection. Similarly, in potyviruses the amino acid motif DAG must be present near the N-terminus of the coat protein to allow aphid transmission; mutations at this site render the virus non-transmissible by vectors.

Assessment of consequence

41. After the likelihood of all hazards is assessed, the consequence of each hazard should be estimated. Again, the consequence will depend to a very large extent on the potential receiving environment. In particular, the presence of sexually compatible plants or species with which the GMO may be able to compete will be important considerations.

42. Evaluation of the magnitude of potential consequence is difficult since there is inevitably a degree of judgement involved, although a qualitative appraisal of the impact on other species or ecosystems should be possible. For the purposes of using the risk determination matrix in Table 4.2.1, consequences could be described as being ‘severe’, ‘modest’, ‘minor’, or ‘negligible’. The following descriptions may help:

- **Severe consequence**: a major change in the numbers of one or more species leading to negative effects on the functioning of the ecosystem and/or other connected ecosystems (for example, significantly altering the turnover of biomass, or supply of nutrients to crops). It is unlikely that the changes would be easily reversible.

- **Negligible consequence**: no measurable change in any population, eg plant, animal or microbial, in the environment or in any ecosystem function. (This does not preclude some fluctuation in indigenous populations as long as this is within the range of that which could be expected naturally.)

43. It should be borne in mind that even if the consequences of a hazard being realised are deemed ‘severe’, if the probability of the hazard being manifested at all was ‘negligible’ then there is ‘effectively zero’ risk of harm. Likewise if the consequence of a hazard were ‘negligible’ or ‘minor’, then even if the probability of its manifestation were ‘high’ the risk of harm would still be ‘low’ (see Table 4.2.1).

44. However, a precautionary approach to risk determination is advised. In situations where the probability of the hazard being manifested was ‘negligible’, should there be a ‘severe’ consequence to the identified hazard, then more stringent containment than would
otherwise be appropriate for an ‘effectively zero’ risk of harm might be prudent. A balanced view of the risks is therefore required.

**Determination of risk**

45. The risk determination matrix can be used to estimate the level of risk (see Table 4.2.1). This matrix is provided as a tool and is not intended to be a definitive measure of risk. It may be necessary to evaluate whether any specific control measures are required to adequately protect the environment. Containment measures should be applied until the risk of harm is ‘effectively zero’. Further guidance on containment measures to protect both the environment and human health can be found below.

**Containment level needed to sufficiently protect against harm to the environment**

46. It is recommended that the minimum containment measures needed that are necessary to protect the environment be set at this stage. The containment measures that will be required will be solely for the purpose of preventing release of the GMO, or to minimise the likelihood that it will become a threat to the environment. Factors that may be relevant to this include:

- containment measures required by any plant health license needed for work on the recipient organism;
- any identified hazards arising as a consequence of the genetic modification, the severity of any harmful consequences and the likelihood that they might occur (determination of the risk of harm, see above).

47. If there are no prescribed containment measures for the recipient organism, then a judgement should be made about whether the GMO will be a risk to the environment. If all risks are deemed to be ‘low’ or ‘effectively zero’ then no specific measures will be required. However, if any risk exceeds this level then control measures should be implemented such that the risk of harm to the environment is reduced to ‘low’ or ‘effectively zero’.

48. There is no regulatory requirement to set a formal containment level (ie Containment Level 1, 2, 3 or 4) for work with GM plants. A number of containment measures and procedures that can be used to reach the required standards can be found in Section 4.5. However, many users find it helpful to set a containment level that is appropriate for the facility in which the work will be carried out. A guide to assigning containment levels for activities with GM plants can be found below. Users could judge whether the measures in the integrated table (Table 4.3.1) in Section 4.3 of containment measures are also
appropriate for the GM plant. This might be particularly appropriate to situations where the GM plant will be handled in the same facility in which work with a GM microorganism is taking place. If using this approach, however, it is important to remember that the Environmental Protection Act requires the containment measures used to be sufficient to safeguard the environment. Therefore, additional measures may be required beyond those in the table.

Risk assessment for human health

49. There is a requirement under the Contained Use Regulations to consider risks to human health posed by the GM activity. The objective is to identify all plausible hazards to human health and then to assess the likelihood and potential severity of the consequences, should the hazards be realised. It is recognised that for many activities with GM plants, the risk to humans will automatically be low or effectively zero. However, hazards to humans might arise due to modifications that affect allergenicity or toxicity of a plant.

50. Guidance on containment and control strategies that are relevant to plant growth facilities can be found in Section 4.5.

Mechanisms by which the GMO could be a risk to human health

51. As for the environmental risk assessment, the hazard identification process must include considerations of potentially harmful or adverse effects upon the environment that would be mediated by the recipient organism, the products of any inserted genes or the predicted properties of the final GMO. However, assessments should concentrate on hazards arising from modification, rather than those of the parent plant.

52. The majority of human health hazards will most likely arise due to modifications that alter allergenic or toxic properties. For instance, the expression of genes encoding biologically active compounds might result in plants that are more toxic or allergenic. For example, plants that are used in the biomanufacture of pharmaceuticals and other bioactive products, eg Aprotinin, Interferon, MAbs, Alpha-galactosidase A and Lysosomal Acid Lipase, may represent a greater risk of harm to human health than plants expressing marker genes. Alternatively, the exacerbation of the inherent properties of an already toxic plant might represent a mechanism whereby the hazards to human health are increased. For instance, a modification that results in elevated levels of atropine expression in *Atropa belladonna* would arguably represent a GMO that is of a greater risk to human health than the wild-type plant.
53. Where a potential for harm to humans is identified, consideration should be given to whether direct contact with plant parts (e.g., leaves, sap or pollen) might be a hazard, or whether the plant could be incidentally or inadvertently ingested. Consideration may also need to be given to the potential for the products to be expressed in different plant tissues, the consequent routes of exposure and the possibility that these may be altered.

54. Consideration should also be given to the possibility that plant post-translational processing may differ from that of mammalian cells. Therefore, potentially toxic or allergenic human or animal products expressed in plant systems might be processed differently and there may be unexpected effects due to presentation of novel confirmations.

**Likelihood that the GMO will be a risk to human health**

55. For each identified hazard, an estimation of the likelihood of it being manifested and the seriousness of the consequence should be made in a similar way to the assessment of environmental risks outlined above. The GMO may have characteristics that make it a potential health hazard, but the chances of them being realised should be evaluated and understood. The risk determination matrix (Table 4.2.1) can be used as a tool to evaluate the magnitude of the hazards. This will require an estimation of both the likelihood and consequences of exposure. This matrix is not intended to be a definitive measure of risk and the specifics each case should be carefully considered.

56. Once again, estimating the likelihood of a harmful consequence being realised will be difficult where there is no firm data on which to base a judgement and the weight given to information should reflect the quality of the supporting data. Where the likelihood of harm is poorly understood, a precautionary approach should be adopted until evidence to the contrary has been obtained. For the purposes of using the risk determination matrix, likelihood can be expressed as ‘high’, ‘medium’, ‘low’ or ‘negligible’.

57. Similarly, evaluation of the magnitude of potential consequence may be difficult as it is inevitable that this will involve a degree of judgement. However, a qualitative appraisal of the impact on humans should be possible. For the purposes of using the risk determination matrix, consequences could be described as being ‘severe’, ‘modest’, ‘minor’, or ‘negligible’.

**Control measures needed to sufficiently protect human health**

58. It may be necessary to evaluate whether any specific control measures are required to adequately protect human health. If necessary, containment measures should be applied
until the risk of harm is ‘effectively zero’. It is a requirement of the Contained Use Regulations that all measures deemed by the risk assessment as necessary for the protection of human health be implemented.

59. In many cases, the relevant principles of good occupational safety and hygiene will be sufficient to protect human health. These principles are detailed in Part 3, Section 3.1. Furthermore, some of the measures implemented for environmental protection may be adequate to minimise or prevent exposure. However, only risks to human health will have a bearing on the notification requirements for the work (see below).

Review of procedures and control measures

60. The requirements of the final containment level must be sufficient to control all the potential harmful properties of the GMO and offer sufficient protection for both the environment and human health. The containment and control measures identified so far for environmental and human health protection only broadly define those needed as a function of the properties of the GMO itself.

61. The nature of the activity will also affect the level of risk. Therefore, it is important to take into account the nature of the work or any non-standard operations that might increase the likelihood of release or risk of exposure. For example:

- large-scale manufacture of a GM plant-derived product. This will often mean that large amounts of the GMO will be handled, which may result in increased likelihood of release and exposure;
- the use of non-standard growth facilities. This could be any facility that differs from the usual ‘glasshouse-style’ plant growth structures. For example, this might include the growth of transgenic duckweed in ponds/tanks or culturing GM microalgae in fermenters. The control measures needed to prevent accidental release or exposure will often differ in these facilities.

62. If any such operations or activities are likely to generate risks that are not accounted for in the minimum containment measures already applied in reaction to the risk assessments for the environment and human health, then additional control measures should be applied. Equally, it may be that as a result of the activity, the nature of a risk that is inherent to the GMO itself is diminished. For example, if GM microalgae are cultured in a sealed system, then exposure to workers might be much less likely. In these cases, certain control measures might not be required.
Assignment of final containment measures

63. Unlike work with GM plant-associated microorganisms, there is no regulatory requirement to set a formal containment level (ie Containment Level 1, 2, 3 or 4) for work with GM plants. A number of containment measures and procedures that can be used to reach the required standards can be found below.

64. The environmental risk assessment will have established the principal control measures needed to keep the GM plant contained. The relevant principles of good occupational safety and hygiene should be sufficient to protect human health. These principles are detailed in Part 3, Section 3.1. However, if the risk assessment for human health has identified hazards, for example allergenicity of the expressed product, then additional controls may be needed to protect the operators. This is most likely to take the form of restricted access, personal protective equipment such as gloves or coveralls and staff training.

A guide to assigning containment levels for activities with GM plants

65. The majority of plant growth facilities used for activities involving plant-associated GMMs are also used for work on GM plants. This means that the facility has to be assigned into one of four containment levels for GMM work, but the applicability of this to working solely with GM plants is not always clear. However, some of the measures appropriate for controlling GMMs may also be applicable to GM plant work, for example, for controlling pollen and seeds.

66. The following guide can be used to determine which containment level is appropriate for certain types of GM plant work. The use of Containment Level 1, 2 or 3 for GM plant work is based the use of ‘standard’ glasshouse or a similar facility. Non-standard growth facilities (for example the growth of lower plants in tanks) may require special consideration and containment measures. It is not envisaged that any plant growth facility in the UK will need to be of Containment Level 4 standard.

67. While there are legal minimum containment requirements for GMMs, no such system exists in the legislation for activities with GM plants, and users may adopt other methods as long as the basic requirements set by the EPA to prevent GM plants from entering the environment and causing harm are met. Therefore, the examples used below are illustrative and are provided for guidance purposes only.
68. **Containment Level 1.** A Level 1 facility is appropriate for GMMs in association with plants where there is no risk of harm arising. They may also be appropriate for GM plants which are derived from: (i) exotic, non-indigenous plant species which are unable to survive, establish and disseminate in even the most optimum of receiving environments; or (ii) indigenous species which are capable of surviving and establishing but where the nature of the plant provides a reasonable assurance that there will be no dissemination of pollen or seed during the course of the contained use activity. Level 1 facilities are also suitable for plant cell cultures, provided no pathogens are present and as long as they have not been modified to be potentially harmful to humans.

69. Many activities involving the model plant species *Nicotiana tabacum* would fall into the first category. *N. tabacum* is not widely grown for commercial purposes in the UK, has no known relatives that are native to the UK. It does not cross-pollinate with ornamental *Nicotiana* species grown in the UK. *N. tabacum* seeds may be capable of overwintering in the UK, although their germination is likely to be terminated by spring frosts. Therefore, unless the modification increases the ability of the GM *N. tabacum* to survive, establish and disseminate in the receiving environment, level 1 is likely to be appropriate.

70. An example of the latter case would be activities involving indigenous tree species that will be terminated prior to the trees becoming sexually mature, or activities involving young sugar beet that are terminated prior to the production of a flowering stalk in the second year. If the experiments were completed within the first year and any rogue flower spikes were immediately removed then level 1 may be appropriate, depending on the outcome of the risk assessment.

71. **Containment Level 2.** A Level 2 facility is appropriate for plant-associated GMMs where the risk assessment has identified a low risk of harm should the organism escape. They may also be appropriate for GM plants that are able to survive, establish and disseminate in the receiving environment but have genetic modifications that are unlikely to cause harm to either humans or the environment, as defined by the EPA. For example, many activities involving the model plant species *Arabidopsis thaliana* are likely to fall into this category of containment. *A. thaliana* is used in many GM centres for fundamental genetic studies and individual GM activities may result in many thousands of seeds being produced which are capable of surviving in the receiving environment, establishing populations and disseminating the transgenes in the environment. However, the vast majority of modifications involving *A. thaliana* are unlikely to result in a more harmful phenotype and Containment Level 2 measures are considered reasonably practicable to limit contact with both humans and the environment to an acceptably low level.
72. **Containment Level 3.** A level 3 facility is appropriate for plant-associated GMMs where the risk assessment has identified a moderate risk of harm should the GMM escape from the facility. Such activities are likely to involve GM plant pathogens with increased pathogenicity/altered host interactions or where the mechanism of vector spread or host range has been changed. They may also be appropriate for GM plants that are able to survive, establish and disseminate in the receiving environment and have genetic modifications that give rise to potentially hazardous properties, making it unreasonable to suggest that harm to either humans or the environment would be unlikely in the event of a release. An example of this would be *A. thaliana* expressing a toxin gene or an agricultural plant species which, as a result of the modification, may be able to escape from the confines of human agricultural controls and exploit a novel ecological niche, detrimentally affecting those organisms already present there (for example oilseed rape with increased salinity tolerance). Another example of this would be algal cultures in fermenters or tanks that have been genetically modified to produce toxins or pharmaceuticals, which could survive in other water sources (eg water courses, puddles or ponds) if they escaped, causing harm to humans or the environment.
4.5 Containment and control measures for activities with genetically modified plants

Overview

1. The following procedures and containment measures are recommended as minimum standards of good practice and will need to be adapted or supplemented with measures appropriate for plants with specific characteristics. Users will note that all references to ‘Containment A’ and ‘Containment B’ have been removed. This differentiation had no regulatory basis. Furthermore, most activities with GM plants in the UK do not clearly fall under the requirements of either of these levels of containment. Therefore, this terminology is no longer considered helpful and has been replaced by a series of measures (each denoted by a ‘P’ designation) that can be adopted as far as they are appropriate to the activity.

2. The general principles of containment will be consistent irrespective of the species or size of the plant. Appropriate physical barriers will usually be required to prevent seeds or pollen escaping into the wider environment. Containment measures are not only based on the use of physical barriers, but rely on rigorous procedural and management control as well as biological factors which limit the plant’s ability to survive and disseminate. Procedural control can be particularly important in glasshouses, where high temperatures in warm weather may lead to a desire or need to work with doors and windows open for extra ventilation. All measures must be chosen in accordance with the risk assessment. The principles of good microbiological practice and GOSH (see Part 3, Section 3.1) must also be applied to the containment of GM plants where there is a risk to human health and insofar as they are relevant.

3. For GM plants that are incapable of surviving in the environment, have limited ability to transfer genetic material to UK-resident species and where the genetic modification does not increase the level of risk to human health or the environment above that of the non-modified organism, it is anticipated that minimal containment measures will be necessary.

4. For those GM plants that could become established outside of the containment facility, or the genetic modification increases the level of risk to human health or the environment above that of the non-modified parental organism, then more rigorous containment measures should be applied.
**Building**

P1. The structure is likely to be man-made (such as a glasshouse or polytunnel) but could be a defined area or enclosure that may be suitable for limiting contact with the environment (such as a pond or cave). The structure/physical containment should be of suitable design and construction for containment of the work being undertaken. It should be properly maintained so that it will withstand normal climatic conditions over the period of the activity. Where the activity requires minimal containment, non-permanent structures such as polytunnels may be appropriate. A permanent structure will be required for activities needing higher containment, capable of withstanding the normal extremes of climate at the locality. For higher-risk activities, consideration should be given to the use of unbreakable glass or more durable materials, such as polycarbonate sheeting.

**Equipment**

P2. No plants should be planted directly into the ground. All higher plants should be grown in pots, trays or similar containers within the facility. All lower plants should be grown in physical containers such as flasks, tanks or fermenters.

P3. The facility should be easy to clean and maintained in a tidy condition. It is recognised that while the benching commonly used within plant growth facilities is likely to be resistant to acids, alkalis, solvents, disinfectants and decontamination agents and is easy to clean, it may not be impervious to water. Such benching is frequently made of mesh in order to permit the free drainage of water. Where such benching is used, run-off water should be controlled by alternative means, eg using saucers, trays and/or impervious plastic sheeting.

P4. There may be a need to control drainage from the facility. For low-risk activities, the use of a mesh filter during the flowering period may suffice. Where the drain discharges to a sump and soakaway beneath the facility, the use of filters may not be necessary. For higher-risk activities, the floor of the facility should be impervious to water and, where practicable, the facility should either have no drainage, or floor drains should be filtered to minimise seed dispersal or ingress of intermediate vectors. It may be necessary to block drains during the course of an activity. An appropriate system to collect and treat any large volumes of water may also be necessary for the validated inactivation of any potential material that may enter the system (see P9; P12; P13).
**System of work**

P5. Access to the plant growth facility should be controlled. The door to the facility should be closed at all times, except for access, and locked when unattended. For higher-risk activities it may be necessary to limit access to named personnel, which can be controlled using digital keypads, card-swipe systems or the use of suitable padlocks. Keyholes should be avoided, as they can represent an escape route for GMOs or ingress points for intermediate vectors (see P9).

P6. Where appropriate, dedicated handwash facilities should be available to control against the dissemination of GM material (for example pollen or seeds) on the hands of staff. These should be located near the exit door and should preferably have taps that can be operated without being touched by hand. Where a need is identified in the risk assessment, hygiene facilities may need to include provision for cleaning boots/footwear prior to leaving the facility.

P7. Protective clothing (for example laboratory coats) may be required. If the risk assessment shows that this is required, protective garments should be removed on exiting the facility, and prior to washing hands. This should not normally need to be cleaned after each use, but may need to be cleaned/treated before removal from the facility, depending on the level of risk. In other cases it may be sufficient to bag the clothing and send it for appropriate cleaning. Gloves may also be required to be worn where the GM plant poses a risk of harm by contact.

P8. GM plant material and the designated area within the facility for handling it should be clearly marked, indicating who is responsible for the work. Such labelling is particularly important in multi-user facilities.

P9. Screening to prevent ingress by vermin, birds or insects that could disseminate pollen or seeds from the facility should be provided if required by the risk assessment. Vents could have a mesh screen appropriate to the species to be excluded and caulking materials can be used to seal gaps. Floor drains can be filtered or blocked to prevent ingress of intermediate vectors. Brushes or pneumatic strips can be fitted around the edges of doors.

P10. Procedures for the transfer of material between the growth facility and other parts of the site (eg a laboratory) should be implemented to minimise or prevent dissemination of viable GM plant material. Secondary containment, for example double bagging or a box, should provide a suitable means of containment. A transfer container could also be used. Depending on the level of risk identified, this might be a simple vessel, such as a wheelie
bin, or a leak-proof secondary container that would be unlikely to result in the release of GM material in the event of a foreseeable accident.

P11. The growth of plants in the immediate vicinity of the facility should be restricted in order to control against sexually compatible relatives of the GM plants. This can be reasonably achieved by employing a paving or gravel barrier around the facility, in conjunction with herbicide treatment regime.

Waste

P12. Waste GM materials should be inactivated by a validated means prior to disposal. In plant growth facilities, this may include growing media, tools, pots, and other glasshouse equipment that may be contaminated with GM materials (for example, seeds or tubers), as well as plant material. Autoclaving will provide the best assurance of inactivation, although incineration is an appropriate alternative, providing risk management procedures are documented. Off-site incinerators must be registered as GM centres. For the disposal of large quantities of GM plant material that is of low risk, composting might be an appropriate method. The risk assessment should establish the likelihood of viable GM plant propagules regenerating within the composted material. Where this is identified as a possibility, it is unlikely that composting would offer a suitable method of inactivation. If such an approach is intended, the user should consult HSE.

P13. An appropriate system to collect and treat any large volumes of run-off water may be required for the validated inactivation of any potential material that may enter the drainage system (see P9; P12)

Additional control measures

P14. Every effort should be made to dedicate the containment facility to work with a limited range of GM material. This is most easily achieved by using different compartments within the facility for GM and non-GM work. Where the sharing of compartments between different activities is unavoidable, the risk assessment should clearly outline the likelihood of GM contamination, taking into account such things as alternative hosts and sexually compatible relatives. Local rules should be used to clearly outline the expected fate of all material within the compartment. Wherever possible, non-GM material should be subject to the same waste inactivation measures unless fully justified in the risk assessment.
Pollen control measures

P15. Reproductive isolation from sexually compatible relatives in the receiving environment can be achieved by the removal of flowers or halting experiments prior to flowering. Consideration may also be given to the use of male sterile lines or the use of transgene localisation within chloroplasts that may reduce the likelihood of transgene spread through pollen.

P16. Spatial isolation from sexually compatible relatives in the receiving environment can be achieved by ensuring that such plants are a suitable distance away from the facility.

P17. Temporal isolation from sexually compatible relatives in the receiving environment can be achieved by allowing the experimental plants to flower out of the normal season, for example by undertaking the activities in winter.

P18. Physical isolation and reproductive containment is sometimes possible by bagging flower heads prior to anthesis using paper or glassine bags. Alternatively, plants may be contained within secondary insect- or pollen-proof containers. Exhaust air from the facility should be filtered if pollen could be harmful to human health or the environment.

Seed control measures

P19. Spatial isolation from suitable seed germination sites in the receiving environment can be achieved by ensuring such plants are a suitable distance away.

P20. Temporal isolation from suitable seed germination sites in the receiving environment can be achieved by growing experimental plants out of season.

P21. Physical isolation and reproductive containment is sometimes possible by using a seed collection system. This will often involve bagging the flower heads and/or additional containment, such as placing the plant pots on large trays or using a proprietary collection device in order to collect as many seeds as possible. Local rules should be in place detailing the method for seed harvesting and collection.

P22. Sticky floor mats at the exit of the facility can be used to minimise seed dissemination on the feet of staff.
Example GM risk assessments

The following risk assessments give an example format and are for illustrative purposes only. They are not intended to prescribe how GM risk assessments are to be carried out. Furthermore, they are not exhaustive and under each section advice is given on the type of information that would need to be included to provide a comprehensive document that should enable a reviewer (GMSC or external) to determine whether the risk assessment is suitable and sufficient.

Example GM risk assessment: Analysis of pollen-specific promoters in Arabidopsis

Overview

The aim of the project is to analyse pollen-specific promoters in Arabidopsis thaliana using resistance to the herbicide BASTA as a marker.

An amount of background information regarding the purpose of the work should be included. For example, this study is likely to be basic research into the molecular mechanisms of pollen development. However, if there is a longer-term aim for the work, such as the development of a novel biological containment approach, it would be helpful to state this here to inform the risk assessment.

Risk assessment for the environment

Mechanisms by which the GMO might pose a hazard to the environment

Can the GMO survive, establish and disseminate?

A. thaliana is a native to the UK and will survive and disseminate within the receiving environment.

The risk assessment would benefit from further information regarding the nature of the host plant. For instance, the cultivar to be used is Landsberg erecta, which tends to favour laboratory cultivation. Furthermore, the literature indicates that these cultivars will not be able to compete with other species in the UK environment (although this data is limited). The section should include a discussion as to whether or not planned modifications are likely to change these characteristics.

What hazards does the inserted material pose?

The inserted genes encode for bar, which in turn confers resistance to the herbicide BASTA.

Relevant facts regarding the insert and expression characteristics should be included here. For example, details of the gene products’ mechanism of action could be outlined. Furthermore, the fact that this gene has been widely used in plant transformation studies for many years without reports of harm is important information.

Could the GMO or other organisms acquire harmful sequences?

Acquisition of harmful sequences is unlikely as A. thaliana is self-compatible and predominantly inbreeding.

All possible mechanisms of sequence acquisition should be assessed. For instance, cross-pollination via insect vectors or the airborne route is a possibility, although considered to be a rare event restricted to plants in close proximity. The likely use of BASTA as a herbicide in the environment and the potential consequences of the spread of the resistance gene should be considered.
Is the GMO phenotypically/genetically stable?

Yes.

It would be helpful to qualify this assertion. For instance, since the inserted genes encode a herbicide resistance marker, the GMO will be genetically stable in the laboratory where the herbicide will be used. However, in the environment it is unlikely that there will be selection pressure in favour of retaining the inserted gene, unless the herbicide is widely used. Therefore, it is possible that the gene will be lost in the event that the plant establishes itself in the receiving environment.

Likelihood that GMO will be a risk to the environment

What is the likelihood that the hazard(s) will be manifested?

In the event that the GMO is inadvertently released into the environment, via seed or pollen, it is likely that germination will occur, or that cross-pollination with wild-type relatives may take place. The likelihood of these adverse events occurring can be considered to be medium.

How severe might the consequences be?

If seeds of the GM plants were to enter the environment, the resulting plants will be capable of surviving and disseminating. However, these plants are not expected to be able to compete with environmental species, unless they are exposed to BASTA in the environment. Furthermore, given the limited hazards posed by the inserts, should this occur the consequences are considered to be minor.

The level of detail required in this section will vary depending upon the nature of the GMO and hazard it poses. This is why the characteristics of the recipient organism and the inserted material must be explained in detail above to aid justification of the assertions made here. If plants cannot disseminate in the receiving environment, little detail will be required, but where there is greater degree of uncertainty a more extensive reasoned argument should be included.

Determine risk level to the environment

Using the risk determination matrix, the risk to environment is low.

Containment measures needed to protect the environment

Suitable control measures for pollen and seeds will be in place. These will reduce the risk to the environment to effectively zero.

Details of the measures needed should be included here. For instance, flower heads may be bagged in order to control pollen dissemination and limit spillage of seed. The drainage system may also be filtered and all plant material autoclaved. Strict hygiene measures should be in place to collect seeds and control them spilling onto the floor and staff should be appropriately trained.

Risk assessment for human health

For most work with non-food GM plants, the risks to human health will be low, unless there is expression of a product that is potentially toxic or allergenic.

Mechanisms by which the GMO might pose a hazard to health

Are there any health hazards associated with the GMO?

No – *Arabidopsis* is not a plant that is consumed by humans, so the likelihood of ingestion is low. The modifications are not expected to result in an increase in the hazards posed by handling plant material or exposure to pollen.

What hazards does the inserted genetic material pose?
Selection using *bar* has been widely employed in plant transformation studies for many years without reports of harm. Furthermore, there are no known toxic effects attributed to the gene product or its action.

**Likelihood that GMO will be a risk to human health**

*Likelihood of hazards being manifested*

The likelihood that harm to humans will arise following exposure to the GMO is *negligible*.

*How severe might the consequences be?*

Even if plants were to be accidentally consumed, no harmful effects are known of or anticipated. Therefore, the consequences are considered to be *negligible*.

**Determination of risk to human health**

Using the matrix, the risk to human health is *effectively zero*.

**Containment measures needed to protect human health**

No new measures in addition to those measures used to protect the environment are needed.

**Review procedures and control measures**

*Implement measures to safeguard human health and the environment*

*Are there any non-standard operations that might increase risk?*

No.

*What control measures and monitoring procedures are to be used?*

Standard good practice in a glasshouse facility should be sufficient. The risks to both environment and human health are *effectively zero* so no extra control measures are required.

It would be helpful to list or refer to the final range of measures that are being employed in this section.

*Are the potential routes of environmental release known and managed?*

The most likely routes for the release of the GMO into the environment are via seed and pollen dispersal. These routes are known and managed.

**Notification requirements**

The GMO will not represent an increased risk to human health. No notification required.
Example GM risk assessment: Expression of peptides in plants using a plant virus

Overview
The aim of the project is to express the human endostatin peptide in the plant species *Nicotiana benthamiana* using Potato virus X (PVX).

An amount of background information regarding the purpose of the work should be included. For example, the longer-term aim for the work might be to develop a system for production and manufacture of a therapeutic product, which would be handled in large numbers and possibly marketed. It would be helpful to state this here to inform the risk assessment.

Risk assessment for the environment

*Mechanisms by which the GMM might pose a hazard to the environment*

*Can the GMO survive, establish and disseminate?*

PVX occurs naturally in the UK, causing disease in potatoes. The recipient strains are naturally occurring UK field isolates. The burden of the inserts is likely to reduce the fitness of the GMM in the wider environment, and it is anticipated that the inserts will be rapidly lost. Therefore, it will be assumed that the GMMs constructed will retain the ability to establish infections in the UK plant hosts.

Further information about the nature of the recipient strain should be included, for example its host range, properties of transmission and mechanisms of spread. Statements regarding fitness and the potential loss of inserts must be qualified, perhaps by using references to scientific data and the literature. Where there is uncertainty, a precautionary approach should always be taken. For work like this that involves novel methods for the production of pharmaceutically active products, the regulatory authorities will require greater detailed evidence regarding the safety of the GMM.

*What hazards does the inserted material pose?*

The insert will encode human endostatin peptide, which is normally produced in humans and animals during wound healing. The gene will be expressed at high levels in plants via a duplicated subgenomic promoter for the PVX coat protein. The plant material will not be consumed by humans or animals in the laboratory and, as such, is not anticipated to pose a hazard.

The expressed product would not normally be present in the receiving environment in the context of the GMM or infected plant. Once again, a precautionary approach must be taken, as there is unlikely to be substantial evidence of how this product will affect the environment. Any assertions as to the safety of the product in the environment will need to be justified and are likely to be closely scrutinised.

*Have the pathogenic traits of the recipient strain been altered?*

The expression of the peptide is not anticipated to alter the pathogenicity of the virus, or its routes of transmission. If the virus was to escape and infect plants, endostatin could be expressed in the field. It is not expected that this in itself will be harmful.

These statements would need to be fully justified, using a reasoned argument. The regulators would not accept simple statements such as ‘it is not anticipated or ’is not expected to be harmful’ without proper justification and supporting evidence.

*Could the GMM or other organisms acquire harmful sequences?*

No.

Further details and justification for this answer should be included here. For example information about the potential for PVX to recombine with viruses in the field or stable transfer of the inserted sequence to the plant genome would be expected.
Is the GMM phenotypically/genetically stable?

Yes.

Statements like this must be justified. In this case it is hard to justify the statement as arguments have already been presented that the insert will be rapidly lost from the virus. Therefore, the GMM is not genetically stable, even if the consequences of such an event are considered to be negligible.

Likelihood that GMM will be a risk to the environment

What is the likelihood that the hazard(s) will be manifested?

There are no intermediate vectors (e.g., arthropods) known for PVX and the main route of environmental exposure is likely to be mechanical transmission via infected plant material. Given that host plants are not grown in the vicinity of the facility, the likelihood of the GMM escaping and infecting potato plants is low.

Clearly, the likelihood on environmental release and dissemination of the GMM will be much higher if host plants are grown commercially or privately in the immediate environs of the facility. This is unlikely if the facility is in an urban area, but the likelihood of escape and dissemination will be higher in a rural setting.

How severe might the consequences be?

Should the GMM escape and find a suitable host, it is assumed that they will be able to initiate an infection and express endostatins in plants. While it is not expected that the disease symptoms elicited by the GMM will be any different from those associated with the wild-type organism, a novel protein will be expressed. Therefore, the consequences can be considered to be modest.

Given that the expressed product will be novel in the context of the GMM or host plant, there is a high degree of uncertainty and a precautionary approach should always be taken.

Determine risk level to the environment

Using the determination matrix, the risk to environment is medium/low.

Containment level needed to protect the environment

All laboratory work will be undertaken at Containment Level 2. This will reduce the risks to the environment to effectively zero.

A brief explanation as to why Containment Level 2 is appropriate for this work and what specific measures are to be used should be included.

Risk assessment for human health

Mechanisms by which the GMM might pose a hazard to health

Are there any health hazards associated with the GMM?

Endostatin is naturally occurring in the human body. It will be expressed to high levels in experimental plants, but these will not be consumed. It is not anticipated that exposure to the peptides in the sap of infected plants will increase the allergenic or toxic hazards associated with the plants.

These statements would need to be fully justified, using a reasoned argument. The regulators would not accept simple statements such as ‘it is not anticipated’ without proper justification and supporting evidence. As endostatins are in therapeutic use, information on the toxicology of the product should be readily available.
Likelihood that GMM will be a risk to human health

Likelihood of hazards being manifested

Likelihood that humans will be exposed to hazards associated with the GMM is low.

Justification for this assertion is required and will depend upon the likely route of exposure. For example, if the product is a potential allergen and humans may be exposed through handling the plants, then specific control measures (e.g., gloves, coveralls) may need to be assigned below.

How severe might the consequences be?

Even if humans were to be exposed, no harmful effects are anticipated. Therefore, the consequences of exposure are considered to be negligible.

A reasoned argument as to why there are no anticipated harmful effects is required here and will depend upon the toxicology of the product.

Determination of risk to human health

Using the determination matrix, the risks to human health are effectively zero.

Containment level needed to protect human health

As no harmful effects are anticipated in the event of exposure, Containment Level 1 would be sufficient.

The use of protective clothing or gloves may be indicated as part of the environmental risk assessment to prevent release of the GMM into the environment. Such measures may be sufficient to protect against worker exposure, however, if they are actively required for this purpose, then Containment Level 2 is appropriate for protection of human health.

Review procedures and control measures

Implement measures to safeguard human health and the environment

Are there any non-standard operations that might increase risk?

No.

What control measures and monitoring procedures are to be used?

Measures are in implemented for environmental protection. Standard good practice in a Containment Level 2 glasshouse facility will be sufficient, including measures to control mechanical transmission of the GMM.

Details of the control measures used should be included. For example, the plants will be grown in pots and stored on trays within a locked room in a glasshouse for three weeks before being harvested. During this time only trained, authorised operatives will enter the facility. All watering will be via a watering can, taking care being not spread the virus between plants. All infected waste (including plants, pots and soil) will be autoclaved and strict hygiene measures will be observed in the growth room, including the wearing of gloves which will be disposed of through autoclaving and removal.

Are the potential routes of environmental release known and managed?

The most likely routes for release of the virus into the environment are via contaminated waste plant material and human mechanical transmission. These routes are known and managed.
**GM activity classification (Class 1, 2, 3 or 4)**

The Containment Level 2 measures described above for environmental protection are considered appropriate for ensuring that all risks are **effectively zero**.

The activity is therefore assigned to GM Class 2.

**Further information**

HSE priced and free publications are available by mail order from HSE Books, PO Box 1999, Sudbury, Suffolk CO10 2WA Tel: 01787 881165 Fax: 01787 313995 Website: www.hsebooks.co.uk (HSE priced publications are also available from bookshops and free leaflets can be downloaded from HSE’s website: www.hse.gov.uk.)

For information about health and safety ring HSE’s Infoline Tel: 0845 345 0055 Fax: 0845 408 9566 Textphone: 0845 408 9577 e-mail: hse.infoline@natbrit.com or write to HSE Information Services, Caerphilly Business Park, Caerphilly CF83 3GG.

**This document contains notes on good practice which are not compulsory but which you may find helpful in considering what you need to do.**

This document is available web only at: www.hse.gov.uk/biosafety/gmo/acgm/acgmcomp

© Crown copyright This publication may be freely reproduced, except for advertising, endorsement or commercial purposes. First published 01/07. Please acknowledge the source as HSE.

Published by the Health and Safety Executive